6. Tomas, J., Langella, P., Cherbuy, C. (2012). The intestinal microbiota in the rat model: major breakthroughs from new technologies. Anim Health Res Rev. 13(1): 54-63.
https://doi.org/10.1017/S1466252312000072 7. Kiela, P.R., Ghishan, F.K. (2016). Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol. 30(2): 145-159.
https://doi.org/10.1016/j.bpg.2016.02.007 8. Gulbinowicz, M., Berdel, B., Wójcik, S., Dziewiatkowski, J., Oikarinen, S., Mutanen, M., Kosma, V.M., et al. (2004). Morphometric analysis of the small intestine in wild type mice C57BL/6L -- a developmental study. Folia Morphol. 63(4): 423-430.
9. Leroy, F. (2019). Meat as a pharmakon: an exploration of the biosocial complexities of meat consumption. Adv Food Nutr Res. 87, 409-446.
https://doi.org/10.1016/bs.afnr.2018.07.002 10. Gilbert, J.-A., Bendsen, N.T., Tremblay, A., Astrup, A. (2011). Effect of proteins from different sources on body composition. Nutr Metab Cardiovasc Dis. 21(Suppl 2): B16-31.
https://doi.org/10.1016/j.numecd.2010.12.008 11. Westerterp-Plantenga, M.S., Nieuwenhuizen, A., Tomé, D., Soenen, S., Westerterp, K.R. (2009). Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr. 29, 21-41.
https://doi.org/10.1146/annurev-nutr-080508-141056 12. Wang, Y., Beydoun, M.A. (2009). Meat consumption is associated with obesity and central obesity among US adults. Int J Obes (Lond.). 33(6): 621-628.
https://doi.org/10.1038/ijo.2009.45 13. Pham, N.M., Mizoue, T., Tanaka, K., Tsuji, I., Tamakoshi, A., Matsuo, K., Wakai, K., et al. (2014). Meat consumption and colorectal cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol. 44(7): 641-650.
https://doi.org/10.1093/jjco/hyu061 14. Vieira, A.R., Abar, L., Chan, D.S.M., Vingeliene, S., Polemiti, E., Stevens, C., Greenwood, D., Norat, T. (2017). Foods and beverages and colorectal cancer risk: a systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRFAICR continuous update project. Ann Oncol. 28(8): 1788-1802.
https://doi.org/10.1093/annonc/mdx171 15. Kurtdede, E., Alçığır, M.E., Alperen, A.M., Baran, B., Karaca, O., Gülendağ, E. (2023). Evaluation of the combined effects of Turkish mad honey and 5-fluorouracil in colon cancer model in rats. Ankara Univ Vet Fak Derg. 70(4): 427-435.
https://doi.org/10.33988/auvfd.1113279 16. Erejuwa, O.O., Siti, A.S., Mohd, S.A.W. (2014). Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules. 19(2): 2497-2522.
https://doi.org/10.3390/molecules19022497 17. Subramanian, A., Agnes, J., Vellayappan, M.V., Arunpandian, B., Saravana, K.J., Mahitosh, M., Eko, S. (2016). Honey and its phytochemicals: plausible agents in combating colon cancer through its diversified actions. J Food Biochem. 40(4): 613-629.
https://doi.org/10.1111/jfbc.12239 18. Tawfek, N.S., Al-Azhary, D.B., Hassan, H.F., Esraa, G.M. (2018). Ameliorative effects of honey and venom of honey bee on induced colon cancer in male albino rats by 1,2 dimethylhydrazine. Cancer Biol. 8(4): 9-20.
19. Arnone, D., Chabot, C., Heba, A.C., Kökten, T., Caron, B., Hansmannel, F., Dreumont, N., et al. (2022). Sugars and gastrointestinal health. Clin Gastroenterol Hepatol. 20(9): 1912-1924.e7.
https://doi.org/10.1016/j.cgh.2021.12.011 20. Nguyen, D.T.N., Le, N.H., Pham, V.V., Parra, E., Forti, A., Hien, T.L. (2021). Relationship between the ratio of villous height: crypt depth and gut bacteria counts as well production parameters in broiler chickens. J Agric Food Dev. 20(3): 1-10.
https://doi.org/10.52997/jad.1.03.2021 21. Asmaz, E.D., Seyidoglu, N. (2022). The prevention role of Spirulina platensis (Arthrospira platensis) on intestinal health. Food Sci Hum Wellness. 11(5): 1342-1346.
https://doi.org/10.1016/j.fshw.2022.04.027 22. Silva-Santana, G., Aguiar-Alves, F., Silva, L.E., Maria, L.B., Jemima, F.R.S., Alexia, G., Mattos-Guaraldi, A.L., Lenzi-Almeida, K.C. (2019). Compared anatomy and histology between Mus musculus mice (Swiss) and Rattus norvegicus rats (Wistar). Preprints. 2019070306.
https://doi.org/10.29007/m4db 23. Hebel, R., Stromberg, M.W. (1976). Digestive system. In: R. Hebel, M.W. Stromberg (Eds.), Anatomy of the laboratory rat (pp. 43-52). Baltimore: Wiliams and Wilkins
24. Katica, M., Bešić, A., Kapo, N., Klaric, S.D., Cickusic, E., Hadžiomerović, N. (2024). Commensal Brown rat (Rattus norvegicus) as a carrier of potential zoonotic parasites in the urban area of Bosnia and Herzegovina. Wien Tierarztl Monat - Vet Med Austria. 111, doc4.
25. Xu, C., Yang, Z., Yang, Z.F., He, X.X., Zhang, C.Y., Yang, H.M., Rose, S.P., Wang, Z.Y. (2023). Effects of different dietary starch sources on growth and glucose metabolism of geese. Poult Sci. 102(2): 102362.
https://doi.org/10.1016/j.psj.2022.102362 26. Awad, W.A., Ghareeb, K., Abdel-Raheem, S., Böhm, J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult Sci. 88(1): 49-56.
https://doi.org/10.3382/ps.2008-00244 PMid:19096056
27. Laudadio, V., Passantino, L., Perillo, A., Lopresti, G., Passantino, A., Khan, R.U., Tufarelli, V. (2012). Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult Sci. 91(1): 265-270.
https://doi.org/10.3382/ps.2011-01675 PMid:22184453
28. Pu, J., Chen, D., Tian, G., He, J., Zheng, P., Mao, X., Yu, J., et al. (2018). Protective effects of benzoic acid, Bacillus coagulans, and oregano oil on intestinal injury caused by enterotoxigenic Escherichia coli in weaned piglets. Biomed Res Int. 2018, 1829632.
https://doi.org/10.1155/2018/1829632 29. Yao, K., Guan, S., Li, T., Huang, R., Wu, G., Ruan, Z., Yin, Y. (2011). Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Br J Nutr. 105(5): 703-709.
https://doi.org/10.1017/S000711451000365X 30. Prakatur, I., Miskulin, M., Pavic, M., Marjanovic, K., Blazicevic, V., Miskulin, I., Domacinovic, M. (2019). Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals (Basel). 9(6): 301.
https://doi.org/10.3390/ani9060301 31. Kwon, O., Han, T.S., Son, M.Y. (2020). Intestinal morphogenesis in development, regeneration, and disease: the potential utility of intestinal organoids for studying compartmentalization of the cryptvillus structure. Front Cell Devel Biol. 8, 593969.
https://doi.org/10.3389/fcell.2020.593969 32. Rzeznitzeck, J., Breves, G., Rychlik, I., Hoerr, F.J., von Altrock, A., Rath, A., Rautenschlein, S. (2022). The effect of Campylobacter jejuni and Campylobacter coli colonization on the gut morphology, functional integrity, and microbiota composition of female turkeys. Gut Pathog. 14(1): 33.
https://doi.org/10.1186/s13099-022-00508-x 33. Van Nevel, C.J., Decuypere, J.A., Dierick, N.A., Molly, K. (2005). Incorporation of galactomannans in the diet of newly weaned piglets, effect on bacteriological and some morphological characteristics of the small intestine. Arch Anim Nutr. 59(2): 123-138.
https://doi.org/10.1080/17450390512331387936 34. Mantzios, T., Kiousi, D.E., Brellou, G.D., Papadopoulos, G.A., Economou, V., Vasilogianni, M., Kanari, E., et al. (2024). Investigation of potential gut health biomarkers in broiler chicks challenged by Campylobacter jejuni and submitted to a continuous water disinfection program. Pathogens. 13(5): 356.
https://doi.org/10.3390/pathogens13050356 35. Öztap, G., Küçükersan, S. (2023). The effects of Pinus pinaster extract supplementation in low protein broiler diets on performance, some blood and antioxidant parameters, and intestinal histomorphology. Ankara Univ Vet Fak Derg. 70(3): 267-276.
https://doi.org/10.33988/auvfd.981159 36. Seyyedin, S., Nazem, M.N. (2017). Histomorphometric study of the effect of methionine on small intestine parameters in rat: an applied histologic study. Folia Morphol (Warsz). 76(4): 620-629.
https://doi.org/10.5603/FM.a2017.0044 37. Luquetti, B.C., Alarcon, M.F.F., Lunedo, R., Campos, D.M.B., Furlan, R.L., Macar, M. (2016). Effects of glutamine on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis. Sci Agric. 73(4): 322-327.
https://doi.org/10.1590/0103-9016-2015-0114 38. Montoya, C.A., Leterme, P., Lalles, J.P. (2006). A protein-free diet alters small intestinal architecture and digestive enzyme activities in rats. Reprod Nutr Dev. 46(1): 49-56.
https://doi.org/10.1051/rnd:2005063 39. Adam, C.L., Williams, P.A., Garden, K.E., Thomson, L.M., Ross, A.W. (2015). Dose-dependent effects of a soluble dietary fiber (pectin) on food intake, adiposity, gut hypertrophy and gut satiety hormone secretion in rats. PLoS One. 10(1): e0115438.
https://doi.org/10.1371/journal.pone.0115438 40. Xun, W., Shi, L., Zhou, H., Hou, G., Cao, T., Zhao, C. (2015). Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. Int Immunopharmacol. 27(1): 46-52.
https://doi.org/10.1016/j.intimp.2015.04.038 41. Katica, M., Gradaščević, N. (2017). Hematologic profile of laboratory rats fed with bakery products. IJRG 5(5): 221-231.
https://doi.org/10.29121/granthaalayah.v5.i5.2017.1853