Original Scientific Article
The influence of different food types on the morphological characteristics of rat small intestines
Nedžad Hadžiomerović ,
Fuad Babović ,
Anel Vejzović * ,
Aida Bešić ,
Elvir Čičkušić ,
Nejra Dučić ,
Muhamed Katica

Mac Vet Rev 2025; 48 (1): i - ix

10.2478/macvetrev-2025-0010

Received: 16 May 2024

Received in revised form: 28 August 2024

Accepted: 10 October 2024

Available Online First: 23 December 2024

Published on: 20 December 2024

Correspondence: Anel Vejzović, anel.vejzovic@vfs.unsa.ba
PDF HTML

Abstract

Multiple studies have shown the importance of adequate nutrition for animals and humans and its effect on overall health. Therefore, the aim of this study was to investigate the effects of different nutritional regimes on the intestinal health of rats by evaluating different morphological and morphometric characteristics of small intestines, with the emphasis on the villus height:crypt depth ratio (V:C). For the experimental study, 24 clinically healthy adult Wistar rats were used. The rats were randomly divided into 3 groups: the control group (group A) was fed with conventional food, the second group (group B) with bakery products, and the third group (group C) with meat products. Samples of the duodenum and jejunum were collected for detailed morphological and morphometric analysis. A significant increase in the duodenal villi height was reported in group B (661.59 μm) and C (602.83 μm) compared to the control group (475.34 μm). The crypt depth values in the jejunum were significantly higher in group B (191.41μm) and C (246.23 μm) compared with the control (145.14 μm). The jejunal V:C ratio was significantly lower in groups B and C. The study showed significant morphological changes in the intestinal parameters in rats fed predominantly with meat and bakery products. These findings could be applicable in both veterinary and human medicine, underlining the significance of consumed food on gut health.

Keywords: diet, intestines, morphology, rats


References

1. Katica, M., Delibegović, S. (2019). Laboratory animals – Basic techniques of the experimental work. Sarajevo: Dobra knjiga [In Bosnian]
2. Hickman, D.L., Johnson, J., Vemulapalli, T.H., Crisler, J.R, Sheperd, R. (2017). Commonly used animal models. In: M.A. Suckow, K. Stewart (Eds.), Principles of animal research for graduate and undergraduate students (pp.117-175). Amsterdam: Elsevier https://doi.org/10.1016/B978-0-12-802151-4.00007-4 
3. Ghattamaneni, N.K.R., Panchal, S.K., Brown, L. (2019). An improved rat model for chronic inflammatory bowel disease. Pharmacol Rep. 71(1): 149-155. https://doi.org/10.1016/j.pharep.2018.10.006 
4. Steingoetter, A., Arnold, M., Scheuble, N., Fedele, S., Bertsch, P., Liu, D., Parker, H.L., Langhans, W., Fischer, P. (2019). A rat model of human lipid emulsion digestion. Front Nutr. 6, 170. https://doi.org/10.3389/fnut.2019.00170 
5. Liang, Q., Yan, Y., Mao, L., Du, X., Liang, J., Liu, J., Wang, L., Li, H. (2018). Evaluation of a modified rat model for functional dyspepsia. Saudi J Gastroenterol. 24(4): 228-235. https://doi.org/10.4103/sjg.SJG_505_17 
6. Tomas, J., Langella, P., Cherbuy, C. (2012). The intestinal microbiota in the rat model: major breakthroughs from new technologies. Anim Health Res Rev. 13(1): 54-63. https://doi.org/10.1017/S1466252312000072 
7. Kiela, P.R., Ghishan, F.K. (2016). Physiology of intestinal absorption and secretion. Best Pract Res Clin Gastroenterol. 30(2): 145-159. https://doi.org/10.1016/j.bpg.2016.02.007 
8. Gulbinowicz, M., Berdel, B., Wójcik, S., Dziewiatkowski, J., Oikarinen, S., Mutanen, M., Kosma, V.M., et al. (2004). Morphometric analysis of the small intestine in wild type mice C57BL/6L -- a developmental study. Folia Morphol. 63(4): 423-430.
9. Leroy, F. (2019). Meat as a pharmakon: an exploration of the biosocial complexities of meat consumption. Adv Food Nutr Res. 87, 409-446. https://doi.org/10.1016/bs.afnr.2018.07.002 
10. Gilbert, J.-A., Bendsen, N.T., Tremblay, A., Astrup, A. (2011). Effect of proteins from different sources on body composition. Nutr Metab Cardiovasc Dis. 21(Suppl 2): B16-31. https://doi.org/10.1016/j.numecd.2010.12.008 
11. Westerterp-Plantenga, M.S., Nieuwenhuizen, A., Tomé, D., Soenen, S., Westerterp, K.R. (2009). Dietary protein, weight loss, and weight maintenance. Annu Rev Nutr. 29, 21-41. https://doi.org/10.1146/annurev-nutr-080508-141056 
12. Wang, Y., Beydoun, M.A. (2009). Meat consumption is associated with obesity and central obesity among US adults. Int J Obes (Lond.). 33(6): 621-628. https://doi.org/10.1038/ijo.2009.45 
13. Pham, N.M., Mizoue, T., Tanaka, K., Tsuji, I., Tamakoshi, A., Matsuo, K., Wakai, K., et al. (2014). Meat consumption and colorectal cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol. 44(7): 641-650. https://doi.org/10.1093/jjco/hyu061 
14. Vieira, A.R., Abar, L., Chan, D.S.M., Vingeliene, S., Polemiti, E., Stevens, C., Greenwood, D., Norat, T. (2017). Foods and beverages and colorectal cancer risk: a systematic review and meta-analysis of cohort studies, an update of the evidence of the WCRFAICR continuous update project. Ann Oncol. 28(8): 1788-1802. https://doi.org/10.1093/annonc/mdx171 
15. Kurtdede, E., Alçığır, M.E., Alperen, A.M., Baran, B., Karaca, O., Gülendağ, E. (2023). Evaluation of the combined effects of Turkish mad honey and 5-fluorouracil in colon cancer model in rats. Ankara Univ Vet Fak Derg. 70(4): 427-435. https://doi.org/10.33988/auvfd.1113279 
16. Erejuwa, O.O., Siti, A.S., Mohd, S.A.W. (2014). Effects of honey and its mechanisms of action on the development and progression of cancer. Molecules. 19(2): 2497-2522. https://doi.org/10.3390/molecules19022497  
17. Subramanian, A., Agnes, J., Vellayappan, M.V., Arunpandian, B., Saravana, K.J., Mahitosh, M., Eko, S. (2016). Honey and its phytochemicals: plausible agents in combating colon cancer through its diversified actions. J Food Biochem. 40(4): 613-629. https://doi.org/10.1111/jfbc.12239 
18. Tawfek, N.S., Al-Azhary, D.B., Hassan, H.F., Esraa, G.M.  (2018). Ameliorative effects of honey and venom of honey bee on induced colon cancer in male albino rats by 1,2 dimethylhydrazine. Cancer Biol. 8(4): 9-20.
19. Arnone, D., Chabot, C., Heba, A.C., Kökten, T., Caron, B., Hansmannel, F., Dreumont, N., et al. (2022). Sugars and gastrointestinal health. Clin Gastroenterol Hepatol. 20(9): 1912-1924.e7. https://doi.org/10.1016/j.cgh.2021.12.011 
20. Nguyen, D.T.N., Le, N.H., Pham, V.V., Parra, E., Forti, A., Hien, T.L. (2021). Relationship between the ratio of villous height: crypt depth and gut bacteria counts as well production parameters in broiler chickens. J Agric Food Dev. 20(3): 1-10. https://doi.org/10.52997/jad.1.03.2021 
21. Asmaz, E.D., Seyidoglu, N. (2022). The prevention role of Spirulina platensis (Arthrospira platensis) on intestinal health. Food Sci Hum Wellness. 11(5): 1342-1346. https://doi.org/10.1016/j.fshw.2022.04.027 
22. Silva-Santana, G., Aguiar-Alves, F., Silva, L.E., Maria, L.B., Jemima, F.R.S., Alexia, G., Mattos-Guaraldi, A.L., Lenzi-Almeida, K.C. (2019). Compared anatomy and histology between Mus musculus mice (Swiss) and Rattus norvegicus rats (Wistar). Preprints. 2019070306. https://doi.org/10.29007/m4db 
23. Hebel, R., Stromberg, M.W. (1976). Digestive system. In: R. Hebel, M.W. Stromberg (Eds.), Anatomy of the laboratory rat (pp. 43-52). Baltimore: Wiliams and Wilkins
24. Katica, M., Bešić, A., Kapo, N., Klaric, S.D., Cickusic, E., Hadžiomerović, N. (2024). Commensal Brown rat (Rattus norvegicus) as a carrier of potential zoonotic parasites in the urban area of Bosnia and Herzegovina. Wien Tierarztl Monat - Vet Med Austria. 111, doc4.
25. Xu, C., Yang, Z., Yang, Z.F., He, X.X., Zhang, C.Y., Yang, H.M., Rose, S.P., Wang, Z.Y. (2023). Effects of different dietary starch sources on growth and glucose metabolism of geese. Poult Sci. 102(2): 102362. https://doi.org/10.1016/j.psj.2022.102362 
26. Awad, W.A., Ghareeb, K., Abdel-Raheem, S., Böhm, J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult Sci. 88(1): 49-56. https://doi.org/10.3382/ps.2008-00244 PMid:19096056
27. Laudadio, V., Passantino, L., Perillo, A., Lopresti, G., Passantino, A., Khan, R.U., Tufarelli, V. (2012). Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult Sci. 91(1): 265-270. https://doi.org/10.3382/ps.2011-01675 PMid:22184453
28. Pu, J., Chen, D., Tian, G., He, J., Zheng, P., Mao, X., Yu, J., et al. (2018). Protective effects of benzoic acid, Bacillus coagulans, and oregano oil on intestinal injury caused by enterotoxigenic Escherichia coli in weaned piglets. Biomed Res Int. 2018, 1829632. https://doi.org/10.1155/2018/1829632 
29. Yao, K., Guan, S., Li, T., Huang, R., Wu, G., Ruan, Z., Yin, Y. (2011). Dietary L-arginine supplementation enhances intestinal development and expression of vascular endothelial growth factor in weanling piglets. Br J Nutr. 105(5): 703-709. https://doi.org/10.1017/S000711451000365X 
30. Prakatur, I., Miskulin, M., Pavic, M., Marjanovic, K., Blazicevic, V., Miskulin, I., Domacinovic, M. (2019). Intestinal morphology in broiler chickens supplemented with propolis and bee pollen. Animals (Basel). 9(6): 301. https://doi.org/10.3390/ani9060301 
31. Kwon, O., Han, T.S., Son, M.Y. (2020). Intestinal morphogenesis in development, regeneration, and disease: the potential utility of intestinal organoids for studying compartmentalization of the cryptvillus structure. Front Cell Devel Biol. 8, 593969. https://doi.org/10.3389/fcell.2020.593969 
32. Rzeznitzeck, J., Breves, G., Rychlik, I., Hoerr, F.J., von Altrock, A., Rath, A., Rautenschlein, S. (2022). The effect of Campylobacter jejuni and Campylobacter coli colonization on the gut morphology, functional integrity, and microbiota composition of female turkeys. Gut Pathog. 14(1): 33. https://doi.org/10.1186/s13099-022-00508-x 
33. Van Nevel, C.J., Decuypere, J.A., Dierick, N.A., Molly, K. (2005). Incorporation of galactomannans in the diet of newly weaned piglets, effect on bacteriological and some morphological characteristics of the small intestine. Arch Anim Nutr. 59(2): 123-138. https://doi.org/10.1080/17450390512331387936 
34. Mantzios, T., Kiousi, D.E., Brellou, G.D., Papadopoulos, G.A., Economou, V., Vasilogianni, M., Kanari, E., et al. (2024). Investigation of potential gut health biomarkers in broiler chicks challenged by Campylobacter jejuni and submitted to a continuous water disinfection program. Pathogens. 13(5): 356. https://doi.org/10.3390/pathogens13050356 
35. Öztap, G., Küçükersan, S. (2023). The effects of Pinus pinaster extract supplementation in low protein broiler diets on performance, some blood and antioxidant parameters, and intestinal histomorphology. Ankara Univ Vet Fak Derg. 70(3): 267-276. https://doi.org/10.33988/auvfd.981159 
36. Seyyedin, S., Nazem, M.N. (2017). Histomorphometric study of the effect of methionine on small intestine parameters in rat: an applied histologic study. Folia Morphol (Warsz). 76(4): 620-629. https://doi.org/10.5603/FM.a2017.0044 
37. Luquetti, B.C., Alarcon, M.F.F., Lunedo, R., Campos, D.M.B., Furlan, R.L., Macar, M. (2016). Effects of glutamine on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis. Sci Agric. 73(4): 322-327. https://doi.org/10.1590/0103-9016-2015-0114 
38. Montoya, C.A., Leterme, P., Lalles, J.P. (2006). A protein-free diet alters small intestinal architecture and digestive enzyme activities in rats. Reprod Nutr Dev. 46(1): 49-56. https://doi.org/10.1051/rnd:2005063 
39. Adam, C.L., Williams, P.A., Garden, K.E., Thomson, L.M., Ross, A.W. (2015). Dose-dependent effects of a soluble dietary fiber (pectin) on food intake, adiposity, gut hypertrophy and gut satiety hormone secretion in rats. PLoS One. 10(1): e0115438. https://doi.org/10.1371/journal.pone.0115438 
40. Xun, W., Shi, L., Zhou, H., Hou, G., Cao, T., Zhao, C. (2015). Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. Int Immunopharmacol. 27(1): 46-52. https://doi.org/10.1016/j.intimp.2015.04.038 
41. Katica, M., Gradaščević, N. (2017). Hematologic profile of laboratory rats fed with bakery products. IJRG 5(5): 221-231. https://doi.org/10.29121/granthaalayah.v5.i5.2017.1853 
 


Copyright

© 2024 Hadžiomerović N. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of Interest Statement

The authors declared that they have no potential lict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 48, Issue 1, Pages i-ix, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2025-0010