Original Scientific Article
Therapeutic effect of herbal-based drug on severe sepsis in calves: an innovative immunomodulatory and antiinflammatory strategy in herd medicine
Masoomeh Heidari Sureshjani ,
Marzieh Mokhber Dezfouli ,
Zohre Eftekhari * ,
Samad Lotfollahzadeh ,
Hesam-aldin Akbarein

Mac Vet Rev 2025; 48 (1): 87 - 99

10.2478/macvetrev-2025-0018

Received: 20 July 2024

Received in revised form: 19 January 2025

Accepted: 20 January 2025

Available Online First: 05 March 2025

Published on: 15 March 2025

Correspondence: Zohre Eftekhari, z_eftekhari@pasteur.ac.ir
PDF HTML

Abstract

Septicemia is a significant threat to newborn calves, often due to inadequate colostrum intake in the first day of life. The study aimed to assess the effects of a newly developed herbal formulation on septicemia induced by Escherichia coli strain O111:H8. Ten Holstein-Friesian calves aged 8-10 days were divided into two groups. Experimental septicemia was induced for all calves (n=10). The treatment group (n=5) received a herbal formulation containing extracts from Rosa canina, Urtica dioica, Tanacetum vulgare, selenium, flavonoids, and carotenes, in addition to antibiotics. The control group (n=5) received a placebo (5% dextrose) along with antibiotics for five days. The animals were monitored for 14 days. Blood samples were analyzed for cytokines, cardiac enzymes, renal function, and total antioxidant capacity before and after treatment. The treatment group had non-significantly higher CD4+ counts compared to the control. The serum level of IL-6 increased after treatment, with a considerable difference between the groups at 72 h (p=0.0014). The herbal formulation positively impacted renal and cardiac function evidenced by decreased cardiac troponin I levels and increased total antioxidant capacity (TAC). Lactate dehydrogenase (LDH) levels changed significantly over time (p<0.05), with a positive correlation between ECG changes and peak LDH levels (p<0.05). The increased cytokines beside ameliorative effects on heart and kidney functions suggest that the herbal drug may possess immunomodulatory and anti-inflammatory properties that aid in managing the inflammatory response during sepsis. These findings support the use of this herbal-based drug as an adjunctive treatment in veterinary practices for managing septicemia in calves.

Keywords: calves, septicemia, Rosa canina, Urtica dioica, Tanacetum vulgare


References

1. Mokhber Dezfouli, M.R., Mohammadi, H.R., Nadalian, M.G., Nazem Bokaee, Z., Hadjiakhoondi, A., Nikbakht Borujeni, G.R., et al. (2011). Influence of parenteral administration of chamomile (Matricaria recutita L.) extract on colostral IgG absorption in neonatal calves. Int J Vet Med. 5(3): 169-171.
2. Tarabees, R., Younis, G., El-Khetaby, H. (2021). Serotypes, virulence factors and antibiograms of Escherichia coli isolated from diarrhetic calves in Egypt: A review. J Curr Vet Res. 3(1): 10-22. https://doi.org/10.21608/jcvr.2021.160184 
3. Lotfollahzadeh, S., Mokhber Dezfouli, M.R., Khazaei Nia, P., Tajik, P., Alidadi, N., Farshadi, H. (2003). Evaluation of influence of two methods of artificially feeding colostrums on serum gammaglobulin concentrations of neonatal calves. J Vet Res (University Tehran). 58, 79-82.
4. Bartels, C.J.M., Holzhauer, M., Jorritsma, R., Swart, W.A.J.M., Lam, T.J.G.M. (2010). Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves. Prev Vet Med. 93(2-3): 162-169. https://doi.org/10.1016/j.prevetmed.2009.09.020 PMid:19819574 PMCid:PMC7125667
5. Sanches, L.A., Gomes, M. da S., Teixeira, R.H.F., Cunha, M.P.V., Oliveira, M.G.X. de, Vieira, M.A.M., et al. (2017). Captive wild birds as reservoirs of enteropathogenic E. coli (EPEC) and Shiga-toxinproducing E. coli (STEC). Brazilian J Microbiol [publication Brazilian Soc Microbiol]. 48(4): 760-763.https://doi.org/10.1016/j.bjm.2017.03.003 PMid:28619663 PMCid:PMC5628295
6. Hernandes, R.T., Elias, W.P., Vieira, M.A.M., Gomes, T.A.T. (2009). An overview of atypical enteropathogenic Escherichia coli. FEMS Microbiol Lett. 297(2): 137-149. https://doi.org/10.1111/j.1574-6968.2009.01664.x PMid:19527295
7. Bashahun, G.M., Amina, A. (2017). Colibacillosis in calves: A review of literature. J Anim Sci Vet Med. 2(3): 62-71.https://doi.org/10.31248/JASVM2017.041 
8. Feuerstein, A., Scuda, N., Klose, C., Hoffmann, A., Melchner, A., Boll, K, et al. (2022). Antimicrobial resistance, serologic and molecular characterization of E. coli isolated from calves with severe or fatal enteritis in Bavaria, Germany. Antibiotics (Basel). 11(1): 23.https://doi.org/10.3390/antibiotics11010023 PMCid:PMC8772957
9. Ngeleka, M., Godson, D., Vanier, G., Desmarais, G., Wojnarowicz, C., Sayi, S., et al. (2019). Frequency of Escherichia coli virotypes in calf diarrhea and intestinal morphologic changes associated with these virotypes or other diarrheagenic pathogens. J Vet Diagn Investig. 31(4): 611-615. https://doi.org/10.1177/1040638719857783 PMid:31184286 PMCid:PMC6857015
10. Kaur, P., Dudeja, P.K. (2023). Pathophysiology of enteropathogenic Escherichia coli-induced diarrhea. Newborn (Clarksville, Md). 2(1): 102-113. https://doi.org/10.5005/jp-journals-11002-0056 PMid:37388762 PMCid:PMC10308259
11. Cuevas, I., Carbonero, A., Cano, D., Pacheco, I.L., Marín, J.C., Borge, C. (2020). The first outbreak of bovine haemorrhagic septicemia caused by Pasteurella multocida type B in Spain-Short communication. Acta Vet Hung. 68(1): 8-11. https://doi.org/10.1556/004.2020.00014 PMid:32384069
12. Ozcan Oruc, E., Sevgiler, Y., Uner, N. (2004). Tissue specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comp Biochem Physiol C Toxicol Pharmacol. 137(1): 43-51. https://doi.org/10.1016/j.cca.2003.11.006 PMid:14984703
13. Otero-García, A., Pérez-Vargas, A.K., Eslava-Campos, C., Licona-Moreno, D., León, L.A. (2022). Molecular genotyping of Escherichia coli o111 isolated from children with diarrhea in rural and urban areas Genotipagem molecular de Escherichia coli o111 isolada de crianças com diarréia em áreas rurais e urbanas. Europub J Health Res. 3(3): 421-435. https://doi.org/10.54747/ejhrv3n3-009 
14. Moradi, T., Azadbakht, R., Dehkordi, S.N., Dehkordi, M.J., Momtaz, H., Sureshjani, M.H. (2020). Evaluation of prevalence of the most important bacterial and protozoal causes of calf diarrhea in Shahrekord suburb dairy husbandries. J Vet Res.75(1): 83-89.
15. Rabbani, M., MoKhber Dezfuli, M.R., Zahraie Salehi, T., Yoosefi Ramandi, A., Bahonar, A.R., Rezazadeh, F. (2007). Detection of anti-E coli, rota virus and corona virus antibodies in sera samples of diarrheic and normal calves under 1 month of age. J Vet Res. 62(2): 145-149.
16. Pardon, B., Deprez, P. (2018). Rational antimicrobial therapy for sepsis in cattle in face of the new legislation on critically important antimicrobials. Vlaams Diergen Tijds. 87(1): 37-46. https://doi.org/10.21825/vdt.v87i1.16094 
17. Timurkan, M.Ö., Alkan, F. (2020). Identification of rotavirus A strains in small ruminants: first detection of G8P[1] genotypes in sheep in Turkey. Arch Virol. 165(2): 425-431. https://doi.org/10.1007/s00705-019-04476-7 PMid:31828508
18. Nikbakhat, G., Tajbakhsh, H., Mokhber Dezfooli, M., Zahrai Salehi, T., Rabani, M., Gharibi, D., et al. (2011). Association between amino acid sequences in peptide binding region (BOLA-DRB3) and susceptibility or resistance to calf diarrhea. J Vet Res. 66(1): 23-52.
19. Annane, D., Bellissant, E., Cavaillon, J-M. (2005). Septic shock. Lancet. 365(9453): 63-78. https://doi.org/10.1016/S0140-6736(04)17667-8 PMid:15639681
20. Nedeva, C., Menassa, J., Puthalakath, H. (2019). Sepsis: inflammation is a necessary evil. Front Cell Dev Biol. 7, 108. https://doi.org/10.3389/fcell.2019.00108 PMid:31281814 PMCid:PMC6596337
21. Arina, P., Singer, M. (2021). Pathophysiology of sepsis. Curr Opin Anesthesiol. 34(2): 77-84. https://doi.org/10.1097/ACO.0000000000000963 PMid:33652454
22. Wu, L., Xiong, X., Wu, X., Ye, Y., Jian, Z., Zhi, Z., et al. (2020). Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci. 13, 28. https://doi.org/10.3389/fnmol.2020.00028 PMid:32194375 PMCid:PMC7066113
23. Korni, F.M.M., Abo El-Ela, F.I., Moawad, U.K. (2020). Role of Moringa oleifera leaves and aqueous extract in prevention of Motile Aeromonas Septicemia in common carp, Cyprinus carpio fingerlings with a reference to histopathological alterations. Aquac Int. 28(1): 153-168. https://doi.org/10.1007/s10499-019-00452-9 
24. Usmani, J., Khan, T., Ahmad, R., Sharma, M. (2021). Potential role of herbal medicines as a novel approach in sepsis treatment. Biomed Pharmacother. 144, 112337. https://doi.org/10.1016/j.biopha.2021.112337 PMid:34688080
25. Liew, K.Y., Hafiz, M.F., Chong, Y.J., Harith, H.H., Israf, D.A., Tham, C.L. (2020). A review of Malaysian herbal plants and their active constituents with potential therapeutic applications in sepsis. Evid Based Complement Altern Med. 2020, 8257817. https://doi.org/10.1155/2020/8257817 PMCid:PMC7641701
26. Thomas, E., Roy, O., Skowronski, V., Zschiesche, E., Martin, G., Bottner, A. (2004). Comparative field efficacy study between cefquinome and gentamicin in neonatal calves with clinical signs of septicaemia. Rev Med Vet. 155(10): 489-493.
27. Ballou, M.A., Cobb, C.J., Hulbert, L.E., Carroll, J.A. (2011). Effects of intravenous Escherichia coli dose on the pathophysiological response of colostrum fed Jersey calves. Vet Immunol Immunopathol. 141(1-2): 76-83. https://doi.org/10.1016/j.vetimm.2011.02.008 PMCid:PMC7112639
28. Sharma, V., McNeill, J.H. (2009). To scale or not to scale: the principles of dose extrapolation. Br J Pharmacol. 157(6): 907-921. https://doi.org/10.1111/j.1476-5381.2009.00267.x PMid:19508398 PMCid:PMC2737649
29. Brouwer, G.J. (2005). Formulary for laboratory animals. Lab Anim. 39(4): 457.
30. Lamy, B., Dargère, S., Arendrup, M.C., Parienti, J-J., Tattevin, P. (2016). How to optimize the use of blood cultures for the diagnosis of bloodstream infections? A state-of-the art. Front Microbiol. 7, 697. https://doi.org/10.3389/fmicb.2016.00697 PMid:27242721 PMCid:PMC4863885
31. Mohammed, S.A.E-M., Marouf, S.A.E-M., Erfana, A.M., El-Jakee, J.K.A.-H., Hessain, A.M., Dawoud, T.M., Kabli, S.A., Moussa, I.M. (2019). Risk factors associated with E. coli causing neonatal calf diarrhea. Saudi J Biol Sci. 26(5): 1084-1088. https://doi.org/10.1016/j.sjbs.2018.07.008 PMCid:PMC6600736
32. Angus, D.C., van der Poll, T. (2013). Severe sepsis and septic shock. N Engl J Med. 369(9): 840-851. https://doi.org/10.1056/NEJMra1208623 PMid:23984731
33. Mohseni-Salehi-Monfared, S.S., Habibollahzadeh, E., Sadeghi, H., Baeeri, M., Abdollahi, M. (2010). Efficacy of Setarud (IMODTM), a novel electromagnetically-treated multi-herbal compound, in mouse immunogenic type-1 diabetes. Arch Med Sci. 6(5): 663-669. https://doi.org/10.5114/aoms.2010.17078 PMid:22419922 PMCid:PMC3298332
34. Rackov, G., Shokri, R., De Mon, M.Á., Balomenos, D. (2017). The role of IFN-β during the course of sepsis progression and its therapeutic potential. Front Immunol. 8, 493. https://doi.org/10.3389/fimmu.2017.00493 PMid:28533774 PMCid:PMC5420561
35. Khairandish, P., Mohraz, M., Farzamfar, B., Abdollahi, M., Shahhosseiny, M.H., Madani, H., et al. (2009). Preclinical and phase 1 clinical safety of Setarud (IMODTM), a novel immunomodulator. DARU J Pharm Sci. 17(3): 148-156.
36. Mohammadirad, A., Khorram-Khorshid, H.R., Gharibdoost, F., Abdollahi, M. (2011). Setarud (IMOD (TM)) as a multiherbal drug with promising benefits in animal and human studies: a comprehensive review of biochemical and cellular evidence. Asian J Anim Vet Adv. 6(12): 1185-1192. https://doi.org/10.3923/ajava.2011.1185.1192 
37. Paydary, K., Emamzadeh-Fard, S., Reza Khorram Khorshid, H., Kamali, K., SeyedAlinaghi, S., Mohraz, M. (2012). Safety and efficacy of Setarud (IMOD TM) among people living with HIV/AIDS: a review. Recent Pat Antiinfect Drug Discov. 7(1): 66-72. https://doi.org/10.2174/157489112799829756 
38. Fecteau, G., Pare, J., Van Metre, D.C., Smith, B.P., Holmberg, C.A., Guterbock, W., et al. (1997). Use of a clinical sepsis score for predicting bacteremia in neonatal dairy calves on a calf rearing farm. Can Vet J. 38(2): 101-104.
39. Seifi, M., Abbasalizadeh, S., Mohammad-Alizadeh-Charandabi, S., Khodaie, L., Mirghafourvand, M. (2018). The effect of Rosa (L. Rosa canina) on the incidence of urinary tract infection in the puerperium: A randomized placebo controlled trial. Phytother Res. 32(1): 76-83. https://doi.org/10.1002/ptr.5950 PMid:29024081
40. Basoglu, A., Baspinar, N., Tenori, L., Hu, X., Yildiz, R. (2014). NMR based metabolomics evaluation in neonatal calves with acute diarrhea and suspected sepsis: a new approach for biomarker/S. Metabolomics. 4(2). https://doi.org/10.4172/2153-0769.1000134 
41. Hsiao, H-W., Tsai, K-L., Wang, L-F., Chen, Y-H., Chiang, P-C., Chuang, S-M., et al. (2012). The decline of autophagy contributes to proximal tubular dysfunction during sepsis. Shock. 37(3): 289-296. https://doi.org/10.1097/SHK.0b013e318240b52a PMid:22089196
42. Mohri, M., Poorkabir, M.A., Hassani Tabatabai, A.M., Mokhber Dezfuli, M.R. (1999). Seasonal variation of serum total protein and gammaglobulin level of neonatal calves in a dairy farm of Tehran suburb. J Vet Res. 54, 25-30.
43. Mohraz, M., Kheiry, A.P., Afsar, K.P., Davarpanah, M.A., Shah, H.M.H., Mahdavian, B., et al. (2009). A clinical trial on the efficacy of IMOD in AIDS patients. DARU J Pharm Sci. 17(4): 277-284.
44. Khardori, R., Castillo, D. (2012). Endocrine and metabolic changes during sepsis: an update. Med Clin North Am. 96(6): 1095-1105. https://doi.org/10.1016/j.mcna.2012.09.005 PMid:23102479
45. Zachara, B.A., Trafikowska, U., Labedzka, H., Mikolajczak, J. (1993). Effect of dietary Se intake on blood Se levels and glutathione peroxidase activities in lambs. Small Rumin Res. 9(4): 331-340. https://doi.org/10.1016/0921-4488(93)90010-F 
46. Guerrero, C.A., Acosta, O. (2016). Inflammatory and oxidative stress in rotavirus infection. World J Virol. 5(2): 38-62. https://doi.org/10.5501/wjv.v5.i2.38 PMid:27175349 PMCid:PMC4861870
47. Rudiger, A., Singer, M. (2007). Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 35(6): 1599-1608. https://doi.org/10.1097/01.CCM.0000266683.64081.02 
48. Patil, H., Vaidya, O., Bogart, D. (2011). A review of causes and systemic approach to cardiac troponin elevation. Clin Cardiol. 34(12): 723-728. https://doi.org/10.1002/clc.20983 PMid:22120679 PMCid:PMC6652696


Copyright

© 2025 Sureshjani M.H. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of Interest Statement

The authors declared that they have no potential lict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 48, Issue 1, Pages 87-99, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2025-0018