Short Communication
The influence of sample quality and ELISA kits on the occurrence of single reactors in serological diagnostics of foot-and-mouth disease and peste des petits ruminants
Ljubiša Veljović * ,
Dimitrije Glišić ,
Zorana Zurovac Sapundžić ,
Sofija Šolaja ,
Vesna Milićević

Mac Vet Rev 2025; 48 (1): 101 - 107

10.2478/macvetrev-2025-0019

Received: 04 October 2024

Received in revised form: 11 December 2024

Accepted: 03 February 2025

Available Online First: 04 March 2025

Published on: 15 March 2025

Correspondence: Ljubiša Veljović, ljubisa.veljovic@nivs.rs
PDF HTML

Abstract

Regular monitoring of susceptible animal species for specific antibodies is essential to achieve or to maintain disease free status for a country. The absence of certain disease in a country for many decades would yield expectation that collected animal serums would be negative for the presence of specific antibodies. However, large-scale tests often dismiss single reactor findings as poor sample quality. The current study aimed to investigate the effect of storage conditions of negative serum samples and the specificity of ELISA kits on the test results, focusing on two key livestock diseases: foot-and-mouth disease (FMD) and peste des petits ruminants (PPR). Serum samples from bovine and ovine sources were stored at varying temperatures and durations, were subjected to freeze-thaw cycles, and were retested. Results were compared with zero-day tests which were considered to be truly accurate and negative. The quality of ELISA test results is less significantly affected by serum samples quality (affected by temperature, storage time, and freeze-thaw cycles) and occurrence of false positive single reactors, than the diagnostic specificity of different ELISA lots. This study challenges the conventional justification for single-reactor findings and underscores the importance of ELISA kit quality.

Keywords: ELISA, foot and mouth disease, sample quality, peste des petites ruminants, diagnostic specifity


References

1. Minić, R., Živković, I. (2020). Optimization, validation and standardization of ELISA. In: Mozsik, G. (Ed.) Norovirus. Chapter 2, London: Intech Open Limited https://doi.org/10.5772/intechopen.94338 
2. Casaubon, J., Chaignat, V., Vogt, H.R., Michel, A., Thür, B., Ryser-Degiorgis, M.P. (2013). Survey of bluetongue virus infection in free-ranging wild ruminants in Switzerland. BMC Vet Res. 9, 166. https://doi.org/10.1186/1746-6148-9-166 PMid:23941229 PMCid:PMC3765105
3. Padalko, E., Colenbie, L., Delforge, A., Ectors, N., Imbert, R., Jansens, H., Pirnay, J.P., et al. (2023). Preanalytical variables influencing the interpretation and reporting of biological tests on blood samples of living and deceased donors for human body materials. JCTR 25(2): 509-520. https://doi.org/10.1007/s10561-023-10106-z PMid:37624485 PMCid:PMC11143040
4. Didkowska, A., Krajewska-Wedzina, M., Klich, D., Prolejko, K., Orlowska, B., Anusz, K. (2021). The risk of false-positive serological results for paratuberculosis in Mycobacterium bovis-infected cattle. Pathogens 10(8): 1054. https://doi.org/10.3390/pathogens10081054 PMid:34451518 PMCid:PMC8399313
5. Lelisa, K., Chibssa, T.R., Desissa, F., Emiyu, K. (2022). Evaluation of diagnostic performance of H-based blocking ELISA for specific detection of peste des petits ruminants in domestic sheep, goats, cattle and camels. BMC Microbiol. 22(1): 254. https://doi.org/10.1186/s12866-022-02669-w PMid:36266634 PMCid:PMC9585824
6. Ma, H., O‘Fagain, C., O‘Kennedy, R. (2020). Antibody stability: a key to performance - analysis, influences and improvement. Biochimie 177, 213-225. https://doi.org/10.1016/j.biochi.2020.08.019 PMid:32891698
7. Knight-Jones, T.J.D., Bulut, A.N., Gubbins, S., Stärk, K.D.C., Pfeiffer, D.U., Paton, D.J. (2014). Retrospective evaluation of foot-and-mouth disease vaccine effectiveness in Turkey. Vaccine 32(16): 1848-1855. https://doi.org/10.1016/j.vaccine.2014.01.071 PMid:24530150 PMCid:PMC3991324
8. Garnier, R., Ramos, R., Sanz-Aguilar, A., Maud Poisbleau, M., Weimerskirch, H., Burthe, S., Tornos, J., Boulinier, T. (2016). Interpreting ELISA analyses from wild animal samples: some recurrent issues and solutions. Funct Ecol. 31(12): 2255-2262. https://doi.org/10.1111/1365-2435.12942 
9. Boadella, M., Gortázar, C. (2011). Effect of haemolysis and repeated freeze-thawing cycles on wild boar serum antibody testing by ELISA. BMC Res Notes. 4, 498. https://doi.org/10.1186/1756-0500-4-498 PMid:22087883 PMCid:PMC3226466
10. Van Stralen, K.J., Stel, V.S, Reitsma, J.B., Dekker, F.W., Zoccali, C., Jager, K.J. (2009). Diagnostic methods: sensitivity, specificity, and other measures of accuracy. Kidney Int. 75(12): 1257-1263. https://doi.org/10.1038/ki.2009.92 PMid:19340091
11. Epitools - Epidemiological Calculators: https://epitools.ausvet.com.au/ 
12.WOAH [Internet]. Terrestrial Manual. (Updated 29/11/2024) Chapter 3.1.8. „Foot And Mouth Disease“ adopted version in May 2022. https://www.woah.org/fileadmin/Home/eng/Health_standards/tahm/3.01.08_FMD.pdf 
13. Xiumei, H., Zhang, R., Taixue, A., Qiang, L., Situ, B., Zihao, O., Changmeng, W. et al. (2020). Impact of heat-inactivation on the etection of SARS-CoV-2 IgM and IgG antibody by ELISA. Clin Chim Acta. 509, 288-292. https://doi.org/10.1016/j.cca.2020.06.032 PMid:32569631 PMCid:PMC7305743
14. Michaut, L., Laurent, N., Kentsch, K., Spindeldreher, S., Deckert-Salva, F. (2014). Stability of anti immunotherapeutic antibodies in frozen human serum samples. Bioanalysis 6(10): 1395-1407. https://doi.org/10.4155/bio.14.97 PMid:24958123
15. Pinsky, N., Huddleston, J., Jacobson, R., Wollan, P., Poland, G. (2003). Effect of multiple freeze-thaw cycles on detection of measles, mumps, and rubella virus antibodies. Clin Diagn Lab Immunol. 10(1): 19-21. https://doi.org/10.1128/CDLI.10.1.19-21.2003 PMid:12522034 PMCid:PMC145292
16. Shurrab, F., Al-Sadeq, D., Amanullah, F., Younes, S., Al-Jighefee, H., Younes, N., Dargham, S. et al. (2021). Effect of multiple freeze-thaw cycles on the detection of anti-SARS-CoV-2 IgG antibodies, J Med Microbiol. 70(8): 70:001402. https://doi.org/10.1099/jmm.0.001402 PMid:34356000 PMCid:PMC8513627
17. Cuhadar, S., Koseoglu, M., Atay, A., Dirican, A. (2013). The effect of storage time and freeze-thaw cycles on the stability of serum samples. Biochem Med. 23(1): 70-78. https://doi.org/10.11613/BM.2013.009 PMid:23457767 PMCid:PMC3900085
18. Torelli, A., Gianchecchi, E., Monti, M., Piu, P., Barneschi, I., Bonifazi, C., Coluccio, R. et al. (2021). Effect of repeated freeze-thaw cycles on influenza virus antibodies. Vaccines 9(3): 267. https://doi.org/10.3390/vaccines9030267 PMid:33802846 PMCid:PMC8002830
19. Cliquet, F., Sagne, L., Schereffer, L., Aubert, M.F. (2000). ELISA test for rabies antibody titration in orally vaccinated foxes sampled in the fields. Vaccine 18(28): 3272-3279. https://doi.org/10.1016/S0264-410X(00)00127-4 PMid:10869772
20. Johnson, M. (2012). Antibody storage and antibody shelf life. Mater Methods. 2, 120. https://doi.org/10.13070/mm.en.2.120 
21. Huang, Z., Zhu, H., Xiao, L., Liu, T., Gan, H., Lin, R., Luo, W., Sun, B. (2023). Allergy patient-specific IgE antibody shows significantly stability during 3 months of storage at multiple temperatures from −80 to 25°C. Front Allergy. Sec Allergens. 4 - 2023. https://doi.org/10.3389/falgy.2023.1239924 PMid:37744695 PMCid:PMC10513756
22. Østergaard, M., Sandfeld-Paulsen, B. (2023). Preanalytical temperature and storage stability of specific IgE antibodies in serum. Scan J Clin Lab. 83(3): 160-165. https://doi.org/10.1080/00365513.2023.2188606 PMid:36988143
23. Cray, C., Rodriguez, M., Zaias, J., Altman, N.H. (2009). Effects of storage temperature and time on clinical iochemical parameters from rat serum. JAALAS 48(2): 202-204.
24. Castro, A.R., Jost, H.A. (2013). Effect of multiple freeze and thaw cycles on the sensitivity of IgG and IgM immunoglobulins in the sera of patients with syphilis. Sex Transm Dis. 40(11): 870-871. https://doi.org/10.1097/OLQ.0000000000000036 PMid:24113410


Copyright

© 2025 Veljović Lj. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of Interest Statement

The authors declared that they have no potential lict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 48, Issue 1, Pages 101-107, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2025-0019