Original Scientific Article
Evaluation of the efficiency of detection of bacterial DNA in milk and tissue samples from cattle, sheep, and goats by conventional and nested PCR targeting Com1, sod and Transposase IS1111 genes of Coxiella burnetii genome
Konstantin Borisov Simeonov * ,
Keytlin Venelinova Todorova ,
Petia Dinkova Genova-Kalou

Mac Vet Rev 2025; 48 (2): i - x

10.2478/macvetrev-2025-0020

Received: 21 June 2024

Received in revised form: 16 February 2025

Accepted: 28 February 2025

Available Online First: 10 April 2025

Published on: 15 October 2025

Correspondence: Konstantin Borisov Simeonov, kbsimeonov@yahoo.com

Abstract

Q fever is a worldwide zoonosis, caused by Coxiella burnetii, an obligate intracellular bacterium that affects both humans and animals. The serious consequences on human health and the economic losses it causes, require the use of rapid,accurate, and sensitive diagnostic methods for its detection. PCR is the most widely used method for the molecular detection of Coxiella burnetii. Considering available information on the different sensitivity of PCR assays according to the selected genetic targets to be amplified, the present study aimed to compare the effectiveness of conventional and nested PCRs performed with primers Trans1/2, OMP1-4, and CB1/CB2 for the detection of Coxiella burnetii genome in samples, obtained from cattle, sheep and goats. Thirty archival DNAs, extracted from placentae, vaginal swabs, bulk tank milk samples, and cheese were tested. The highest level of detection was found when samples were tested with nested PCR with primers OMP1-4, targeting the Com1 gene (96.3%), and to a lesser extent with conventional PCR (56.7% positivity), performed with primers Trans1/2, encompassing a part of the IS1111 insertion sequence. A correlation was found between the detection efficiency of some primers and the type and origin of the samples. The results show that the sensitivity of the various PCR protocols for the detection of Coxiella burnetii could vary, thus the results obtained with one genetic marker should be interpreted with caution.

Keywords: Coxiella burnetii, ruminants, PCR, primers, detection efficiency


References

  1. Madariaga, MG, Rezai, K., Trenholme, GM, Weinstein, RA (2003). Q fever: a biological weapon in your backyard. Lancet Infect Dis. 3(11): 709-721. https://doi.org/10.1016/S1473-3099(03)00804-1 PMid:14592601
  2. Angelakis, E., Raoult, D. (2010). Q fever - review. Vet Microbiol. 140(3-4): 297-309. https://doi.org/10.1016/j.vetmic.2009.07.016   PMid:19875249
  3. Maurin, M., Raoult, D. (1999). Q fever. Clin Microbiol Rev. 12(4): 518-553. https://doi.org/10.1128/CMR.12.4.518 PMid:10515901 PMCid:PMC88923
  4. Melenotte, C., Protopopescu, C., Million, M., Edouard, S., Carrieri, MP, Eldin, C., Angelakis, E., et al. (2018). Clinical features and complications of Coxiella burnetii infections from the French National Reference Center for Q fever. JAMA Network Open. 1(4): e181580. https://doi.org/10.1001/jamanetworkopen.2018.1580 PMid:30646123 PMCid:PMC6324270
  5. Eldin, C., Mélenotte, C., Mediannikov, O., Ghigo, E., Million, M., Edouard, S., Mege, JL, et al. (2017). From Q Fever to Coxiella burnetii infection: a paradigm change. Clin Microbiol Rev. 30(1): 115-190. https://doi.org/10.1128/CMR.00045-16 PMid:27856520 PMCid:PMC5217791
  6. Agerholm, JS (2013). Coxiella burnetii associated reproductive disorders in domestic animals - a critical review. Acta Vet Scand. 55(1): 13. https://doi.org/10.1186/1751-0147-55-13 PMid:23419216 PMCid:PMC3577508
  7. Astobiza, I., Barandika, JF, Ruiz-Fons, F., Hurtado, A., Povedano, I., Juste, RA, García-Pérez, AL (2011). Coxiella burnetii shedding and environmental contamination at lambing in two highly naturally infected dairy sheep flocks after vaccination. Res Vet Sci. 91(3): e58-63. https://doi.org/10.1016/j.rvsc.2010.11.014 PMid:21168178
  8. Arricau-Bouvery, N., Souriau, A., Lechopier, P., Rodolakis, A. (2003). Experimental Coxiella burnetii infection in pregnant goats: Excretion routes. Vet Res. 34(4): 423-433. https://doi.org/10.1051/vetres:2003017 PMid:12911859
  9. Berri, M., Laroucau, K., Rodolakis, A. (2000). The detection of Coxiella burnetii from ovine genital swabs, milk and fecal samples by the use of a single touchdown polymerase chain reaction. Vet Microbiol. 72(3-4): 285-293. https://doi.org/10.1016/S0378-1135(99)00178-9 PMid:10727838
  10. Fournier, PE, Raoult, D. (2003). Comparison of PCR and serology assays for early diagnosis of acute Q fever. J Clin Microbiol. 41(11): 5094-5098. https://doi.org/10.1128/JCM.41.11.5094-5098.2003 PMid:14605144 PMCid:PMC262519
  11. Van den Brom, R., van Engelen, E., Roest, HI, van der Hoek, W., Vellema, P. (2015). Coxiella burnetii infections in sheep or goats: an opinionated review. Vet Microbiol. 181(1-2): 119-129. https://doi.org/10.1016/j.vetmic.2015.07.011 PMid:26315774
  12. Sahu, R., Rawool, DB, Vinod, VK, Malik, SVS, Barbuddhe, SB (2020). Current approaches for the detection of Coxiella burnetii infection in humans and animals. J Microbiol Methods. 179, 106087. https://doi.org/10.1016/j.mimet.2020.106087 PMid:33086105
  13. Zhang, GQ, Hotta, A., Mizutani, M., Ho, T., Yamaguchi, T., Fukushi, H., Hirai, K. (1998). Direct identification of Coxiella burnetii plasmids in human sera by nested PCR. J Clin Microbiol. 36(8): 2210-2213. https://doi.org/10.1128/JCM.36.8.2210-2213.1998 PMid:9665993 PMCid:PMC105014
  14. Stein, A., Raoult, D. (1992). Detection of Coxiella burnetti by DNA amplification using polymerase chain reaction. J Clin Microbiol. 30(9): 2462-2466. https://doi.org/10.1128/jcm.30.9.2462-2466.1992 PMid:1401016 PMCid:PMC265524
  15. Zhang, GQ, Nguyen, SV, To, H., Ogawa, M., Hotta, A., Yamaguchi, T., Kim, HJ, et al. (1998). Clinical evaluation of a new PCR assay for detection of Coxiella burnetii in human serum samples. J Clin Microbiol. 36(1): 77-80. https://doi.org/10.1128/JCM.36.1.77-80.1998 PMid:9431924 PMCid:PMC124811
  16. Berri, M., Arricau-Bouvery, N., Rodolakis, A. (2003). PCR-based detection of Coxiella burnetii from clinical samples. Methods Mol Biol. 216, 153-161. https://doi.org/10.1385/1-59259-344-5:153 PMID: 12512362
  17. Hoover, TA, Vodkin, MH, Williams, JC (1992). A Coxiella burnetti repeated DNA element resembling a bacterial insertion sequence. J Bacteriol. 174(17): 5540-5548. https://doi.org/10.1128/jb.174.17.5540-5548.1992 PMid:1324903 PMCid:PMC206497
  18. Klee, SR, Ellerbrok, H., Tyczka, J., Franz, T., Appel, B. (2006). Evaluation of a real-time PCR assay to detect Coxiella burnetii. Ann NY Acad Sci. 1078, 563-565. https://doi.org/10.1196/annals.1374.111 PMid:17114778
  19. Denison, AM, Thompson, HA, Massung, RF (2007). IS1111 insertion sequences of Coxiella burnetii: characterization and use for repetitive element PCR-based differentiation of Coxiella burnetii isolates. BMC Microbiol. 7, 91. https://doi.org/10.1186/1471-2180-7-91 PMid:17949485 PMCid:PMC2104537
  20. de Bruin, A., de Groot, A., de Heer, L., Bok, J., Wielinga, PR, Hamans, M., van Rotterdam, BJ, Janse, I. (2011). Detection of Coxiella burnetii in complex matrices by using multiplex quantitative PCR during a major Q fever outbreak in The Netherlands. Appl Environ Microbiol. 77(18): 6516-6523. https://doi.org/10.1128/AEM.05097-11 PMid:21784920 PMCid:PMC3187144
  21. Marmion, BP, Storm, PA, Ayres, JG, Semendric, L., Mathews, L., Winslow, W., Turra, M., Harris, RJ (2005). Long- term persistence of Coxiella burnetii after acute primary Q fever. QJM 98(1): 7-20. https://doi.org/10.1093/qjmed/hci009 PMid:15625349
  22. Kargar, M., Rashidi, A., Doosti, A., Najafi, A., Ghorbani-Dalini, S. (2015). The sensitivity of the PCR method for detection of Coxiella burnetii in the milk samples. ZJRMS 17(6): e988. https://doi.org/10.17795/zjrms988
  23. Basanisi, MG, La Bella, G., Nobili, G., Raele, DA, Cafiero, MA, Coppola, R., Damato, AM, et al. (2022). Detection of Coxiella burnetii DNA in sheep and goat milk and dairy products by droplet digital PCR in southern Italy. Int J Food Microbiol. 366, 109583. https://doi.org/10.1016/j.ijfoodmicro.2022.109583 PMid:35182931
  24. Edouard, S., Raoult, D. (2016). Lyophilization to improve the sensitivity of qPCR for bacterial DNA detection in serum: the Q fever paradigm. J Med Microbiol. 65(6): 462-467. https://doi.org/10.1099/jmm.0.000253 PMid:27008653
  25. Jones, RM, Twomey, DF, Hannon, S., Errington, J., Pritchard, GC, Sawyer, J. (2010). Detection of Coxiella burnetii in placenta and abortion samples from British ruminants using real-time PCR. Vet Rec. 167(25): 965-967. https://doi.org/10.1136/vr.c4040 PMid:21262712
  26. Ogawa, M., Setiyono, A., Sato, K., Cai, Y., Shiga, S., Kishimoto, T. (2004). Evaluation of PCR and nested PCR assays currently used for detection of Coxiella burnetii in Japan. Southeast Asian J Trop Med Public Health. 35(4): 852-855.
  27. Mares-Guia, MAMM, Guterres, A., Rozental, T., Ferreira, MDS, Lemos, ERS (2018). Clinical and epidemiological use of nested PCR targeting the repetitive element IS1111 associated with the transposase gene from Coxiella burnetii. Braz J Microbiol. 49(1): 138-143. https://doi.org/10.1016/j.bjm.2017.04.009 PMid:28899604 PMCid:PMC5790644
  28. Abiri, Z., Khalili, M., Kostoulas, P., Sharifi, H., Rad, M., Babaei, H. (2019). Bayesian estimation of sensitivity and specificity of a PCR method to detect Coxiella burnetii in milk and vaginal secretions in sheep and goat samples. J Dairy Sci. 102(6): 4954-4959. https://doi.org/10.3168/jds.2018-15233 PMid:31005328
  29. Klee, SR, Tyczka, J., Ellerbrok, H., Franz, T., Linke, S., Baljer, G., Appel, B. (2006). Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii. BMC Microbiol. 6, 2. https://doi.org/10.1186/1471-2180-6-2 PMid:16423303 PMCid:PMC1360083
  30. Rolain, JM, Raoult, D. (2005). Molecular detection of Coxiella burnetii in blood and serum during Q fever. QJM 98(8): 615-617. https://doi.org/10.1093/qjmed/hci099 PMid:16027172
  31. Gardner, B., Bachmann, N., Polkinghorne, A., Hufschmid, J., Tadepalli, M., Marenda, M., Graves, S., et al. (2023). Novel marine mammal Coxiella burnetii-genome sequencing identifies a new genotype with potential virulence. Pathogens. 12(7): 893. https://doi.org/10.3390/pathogens12070893 PMid:37513739 PMCid:PMC10386718
  32. Huggett, JF, Novak, T., Garson, JA, Green, C., Morris-Jones, SD, Miller, RF, Zumla, A. (2008). Differential susceptibility of PCR reactions to inhibitors: an important and unrecognized phenomenon. BMC Res Notes. 1, 70. https://doi.org/10.1186/1756-0500-1-70 PMid:18755023 PMCid:PMC2564953


Copyright

Copyright: © 2025 Simeonov KB This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Competing Interests

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 48, Issue 2, Pages i-x, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: https://doi.org/10.2478/macvetrev-2025-0020