Original Scientific Article
Phenotypic and molecular characterization of antimicrobial resistance in canine Staphylococci from North Macedonia
Ivana Shikoska * ,
Zagorka Popova Hristovska ,
Ivan Matevski ,
Maja Jurhar Pavlova ,
Marija Ratkova Manovska ,
Aleksandar Cvetkovikj ,
Iskra Cvetkovikj

Mac Vet Rev 2025; 48 (2): i - xiv

10.2478/macvetrev-2025-0022

Received: 10 March 2025

Received in revised form: 14 January 2025

Accepted: 20 March 2025

Available Online First: 30 April 2025

Published on: 15 October 2025

Correspondence: Ivana Shikoska, ivana@fvm.ukim.edu.mk

Abstract

Antimicrobial resistance (AMR) in Staphylococcus spp. is a growing problem in small animal practice, driven by the emergence of methicillin-resistant (MR) and multidrug-resistant (MDR) strains. This study analyzed 170 clinical Staphylococcus isolates from dogs in North Macedonia, using MALDI-TOF MS identification, disc diffusion susceptibility testing, and molecular detection of resistance genes ( mecA, mecC, and blaZ). Staphylococcus pseudintermedius was identified as the most prevalent species (90%), followed by S. aureus (7.6%), S. hemolyticus (1.2%), S. schleiferi (0.6%), and S. intermedius (0.6%). Methicillin resistance was detected in 28.8% of the isolates by detecting mecA. Importantly, there was a significant discrepancy between phenotypic oxacillin resistance and mecA-positive isolates in S. pseudintermedius. Among the 49 mecA-negative but oxacillin-resistant isolates tested for blaZ, 65.3% were blaZ-positive, underscoring the critical role of beta-lactamase-mediated resistance. Overall, MDR was detected in 70.5% of isolates. High resistance was observed to multiple antibiotics, including penicillin G (73%) and clindamycin (61.8%), as well as critically important antibiotics (CIAs), such as fluoroquinolones, with resistance rates of 32.3% for enrofloxacin and 31.2% for marbofloxacin. Pradofloxacin showed the lowest resistance rate (22.3%). This study highlights the high prevalence of antimicrobial resistance in Staphylococcus spp. in dogs. Implementation of antimicrobial stewardship programs is critical to maintain the efficacy of key antimicrobials and ensure optimal treatment outcomes for companion animals in North Macedonia.

Keywords: Staphylococcus pseudintermedius, companion animals, methicillin resistance, beta-lactam resistance, multi-drug resistance


References

  1. Pomba, C., Rantala, M., Greko, C., Baptiste, KE, Catry, B., van Duijkeren, E., et al. (2017). Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother. 72(4): 957-968. https://doi.org/10.1093/jac/dkw481 PMid:279990662
  2. Lord, J., Millis, N., Jones, RD, Johnson, B., Kania, SA, Odoi, A. (2022). Patterns of antimicrobial, multidrug and methicillin resistance among Staphylococcus spp. isolated from canine specimens submitted to a diagnostic laboratory in Tennessee, USA: a descriptive study. BMC Vet Res. 18, 91. https://doi.org/10.1186/s12917-022-03185-9  PMid:35255907  PMCid:PMC8903740
  3. Sweeney, MT, Lubbers, BV, Schwarz, S., Watts, JL (2018). Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J Antimicrob Chemother. 73(6): 1460-1463. https://doi.org/10.1093/jac/dky043 PMid:29481657
  4. (2024) Marco-Fuertes, A., Marin, C., Gimeno-Cardona, C., Artal-Muñoz, V., Vega, S., Montoro-Dasi, L. (2024). Multidrug-resistant commensal and infection-causing Staphylococcus spp. isolated from companion animals in the Valencia region. Vet Sci. 11(2): 54. https://doi.org/10.3390/vetsci11020054 PMid:38393072 PMCid:PMC10891909
  5. Nielsen, SS, Bicout, DJ, Calistri, P., Canali, E., Drewe, JA, Garin-Bastuji, B., et al. (2021). Assessment of animal diseases caused by bacteria resistant to antimicrobials: dogs and cats. EFSA J. 19(6): e06680. https://doi.org/10.2903/j.efsa.2021.6680 PMid:34194578 PMCid:PMC8237238
  6. Bertelloni, F., Cagnoli, G., Ebani, VV (2021). Virulence and antimicrobial resistance in canine Staphylococcus spp. Microorganisms 9(3): 515. https://doi.org/10.3390/microorganisms9030515 PMid:33801518 PMCid:PMC7998746
  7. Wu, MT, Burnham, CAD, Westblade, LF, Bard, JD, Lawhon, SD, Wallace, MA, et al. (2016). Evaluation of oxacillin and cefoxitin disk and MIC breakpoints for prediction of methicillin resistance in human and veterinary isolates of Staphylococcus intermedius group. J Clin Microbiol. 54(3): 535-542. https://doi.org/10.1128/JCM.02864-15 PMid:26607988 PMCid:PMC4767974
  8. Adiguzel, MC, Schaefer, K., Rodriguez, T., Ortiz, J., Sahin, O. (2022). Prevalence, mechanism, genetic diversity, and cross-resistance patterns of methicillin-resistant Staphylococcus isolated from companion animal clinical samples submitted to a veterinary diagnostic laboratory in the Midwestern United States. Antibiotics 11(5): 609. https://doi.org/10.3390/antibiotics11050609  PMid:35625253  PMCid:PMC9138002
  9. Mader, R., Muñoz Madero, C., Aasmäe, B., Bourély, C., Broens, EM, Busani, L., et al. (2022). Review and analysis of national monitoring systems for antimicrobial resistance in animal bacterial pathogens in Europe: A basis for the development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet). Front Microbiol. 13, 838490. https://doi.org/10.3389/fmicb.2022.838490 PMid:35464909 PMCid:PMC9023068
  10. Allerton, F., Prior, C., Bagcigil, AF, Broens, E., Callens, B., Damborg, P, et al. (2021). Overview and evaluation of existing guidelines for rational antimicrobial use in small-animal veterinary practice in Europe. Antibiotics 10(4): 409. https://doi.org/10.3390/antibiotics10040409 PMid:33918617 PMCid:PMC8069046
  11. Cvetkovikj, I., Shikoska, I., Prodanov, M., Rashikj, L. (2022). Antimicrobial resistance in Staphylococci isolated from dogs in the Republic of North Macedonia. Days of Vet Med. September, 22-25, (p. 48), Ohrid, North Macedonia
  12. CLISI. (2024). Performance standards for antimicrobial disks and dilution susceptibility tests for bacteria isolated from animals, 6th ed. CLSI standard VET01. CLSI.
  13. CLSI. (2024). Performance standards for antimicrobial susceptibility testing, 34th ed. CLSI supplement M100. CLSI.
  14. Cuny, C., Layer, F., Strommenger, B., Witte, W. (2011). Rare occurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS One 6(9): e24360. https://doi.org/10.1371/journal.pone.0024360  PMid:21931689  PMCid:PMC3169590
  15. Kang, MH, Chae, MJ, Yoon, JW, Kim, SG, Lee, SY, Yoo, JH, et al. (2014). Antibiotic resistance and molecular characterization of ophthalmic Staphylococcus pseudintermedius isolates from dogs. J Vet Sci. 15(3): 409-415. https://doi.org/10.4142/jvs.2014.15.3.409  PMid:24690601  PMCid:PMC4178142
  16. Prošić, , Milčić-Matić, N., Milić, N., Radalj, A., Aksentijević, K., Ilić, M., et al. (2024). Molecular prevalence of mecA and mecC genes in coagulase-positive staphylococci isolated from dogs with dermatitis and otitis in Belgrade, Serbia: A one-year study. Acta Vet. 74(1): 117-132. https://doi.org/10.2478/acve-2024-0009
  17. Maksimović, , Dizdarević, J., Babić, S., Rifatbegović, M. (2021). Antimicrobial resistance in coagulase-positive Staphylococci isolated from various animals in Bosnia and Herzegovina. Microb Drug Resist. 28(1): 136-142. https://doi.org/10.1089/mdr.2021.0160  PMid:34860586
  18. Matanović, K., Mekić, S., Šeol, B. (2012). Antimicrobial susceptibility of Staphylococcus pseudintermedius isolated from dogs and cats in Croatia during a six-month period. Vet Arch. 82(5): 505-517.
  19. Dinkova, V., Rusenova, N. (2024). A retrospective study on the prevalence and antimicrobial resistance of isolates from canine clinical samples submitted to the University Veterinary Hospital in Stara Zagora, Bulgaria. Microorganisms 12(8): 1670. https://doi.org/10.3390/microorganisms12081670 PMid:39203512 PMCid:PMC11356874
  20. Dégi, J., Morariu, S., Simiz, F., Herman, V., Beteg, F., Dégi, DM (2024). Future challenge: Assessing the antibiotic susceptibility patterns of Staphylococcus species isolated from canine otitis externa cases in Western Romania. Antibiotics 13(12): 1162. https://doi.org/10.3390/antibiotics13121162  PMid:39766552   PMCid:PMC11672840
  21. Koritnik, T., Cvetkovikj, I., Zendri, F., Blum, SE, Chaintoutis, SC, Kopp, PA, et al. (2024). Towards harmonized laboratory methodologies in veterinary clinical bacteriology: outcomes of a European survey. Front Microbiol. 15. https://doi.org/10.3389/fmicb.2024.1443755  PMid:39450288  PMCid:PMC11499178
  22. Alexander, JA, Worrall, LJ, Hu, J., Vuckovic, M., Satishkumar, N., Poon, R., et al. (2023). Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus. Nature 613, 375-382. https://doi.org/10.1038/s41586-022-05583-3 PMid:36599987 PMCid:PMC9834060
  23. Wegener, A., Damborg, P., Guardabassi, L., Moodley, A., Mughini-Gras, L., Duim, B., et al. (2020). Specific staphylococcal cassette chromosome mec (SCCmec) types and clonal complexes are associated with low-level amoxicillin/clavulanic acid and cephalotin resistance in methicillin-resistant Staphylococcus pseudintermedius. J Antimicrob Chemother. 75(3): 508-511. https://doi.org/10.1093/jac/dkz509 .   PMid:31846043  PMCid:PMC9297311
  24. Nomura, R., Nakaminami, H., Takasao, K., Muramatsu, S., Kato, Y., Wajima, T., et al. (2020). A class A β-lactamase produced by borderline oxacillin-resistant Staphylococcus aureus hydrolyses oxacillin. J Glob Antimicrob Resist. 22, 244-247. https://doi.org/10.1016/j.jgar.2020.03.002 PMid:32200127
  25. Arêde, P., Ministro, J., Oliveira, DC (2013). Redefining the role of the β-lactamase locus in methicillin-resistant Staphylococcus aureus: β-lactamase regulators disrupt the mec-mediated strong repression on mecA and optimize the phenotypic expression of resistance in strains with constitutive mecA. Antimicrob Agents Chemother. 57(7): 3037-3045. https://doi.org/10.1128/AAC.02621-12 PMid:23587945 PMCid:PMC3697340
  26. Moodley, A., Damborg, P., Nielsen, SS (2014). Antimicrobial resistance in methicillin-susceptible and methicillin-resistant Staphylococcus pseudintermedius of canine origin: Literature review from 1980 to 2013. Vet Microbiol. 171(3-4): 337-341. https://doi.org/10.1016/j.vetmic.2014.02.008 PMid:24613081
  27. Morais, C., Costa, SS, Leal, M., Ramos, B., Andrade, M., Ferreira, C, et al. (2023). Genetic diversity and antimicrobial resistance profiles of Staphylococcus pseudintermedius associated with skin and soft-tissue infections in companion animals in Lisbon, Portugal. Front Microbiol. 14, 1167834. https://doi.org/10.3389/fmicb.2023.1167834 PMid:37138637 PMCid:PMC10149759
  28. Feuer, L., Frenzer, SK, Merle, R., Bäumer, W., Lübke-Becker, A., Klein, B., et al. (2024). Comparative analysis of methicillin-resistant Staphylococcus pseudintermedius prevalence and resistance patterns in canine and feline clinical samples: Insights from a three-year study in Germany. Antibiotics 13(7): 660. https://doi.org/10.3390/antibiotics13070660 PMid:39061342  PMCid:PMC11273960 
  29. EMA/CVMP/CHMP. (2019). Categorization of antibiotics in the European Union. Eur Med Agency. 1-73.
  30. Menandro, ML, Dotto, G., Mondin, A., Martini, M., Ceglie, L., Pasotto, D. (2019). Prevalence and characterization of methicillin-resistant Staphylococcus pseudintermedius from symptomatic companion animals in Northern Italy: Clonal diversity and novel sequence types. Comp Immunol Microbiol Infect Dis. 66, 101331. https://doi.org/10.1016/j.cimid.2019.101331 PMid:31437680
  31. Shikoska, I., Cvetkovikj, A., Nikolovski, M., Cvetkovikj, I. (2024). Understanding antimicrobial prescription practices: Insights from small animal veterinarians in North Macedonia. Mac Vet Rev. 47(2): 103-114. https://doi.org/10.2478/macvetrev-2024-0020
  32. Food and Veterinary Agency of the Republic of North Macedonia, List of veterinary medicinal products that have a marketing authorization, ie for which the approval has been cancelled, ie for which a change has been made during the validity of the authorization, Official Gazette of the Republic of North Macedonia No. 111/2024 [in Macedonian].
  33. van Damme, CMM, Broens, EM, Auxilia, ST, Schlotter, YM (2020). Clindamycin resistance of skin-derived Staphylococcus pseudintermedius is higher in dogs with a history of antimicrobial therapy. Vet Dermatol. 31(4): 305-e75. https://doi.org/10.1111/vde.12854  PMid:32323363 PMCid:PMC7496164


Copyright

©2025 Shikoska I. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 48, Issue 2, Pages i-xiv, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI:  https://doi.org/10.2478/macvetrev-2025-0022