Original Scientific Article
Monitoring heavy metals, mycotoxins, coccidiostats and microbial contamination in animal feed: а North Macedonia study (2018-2022)
Elizabeta Dimitrieska Stojkovikj * ,
Biljana Stojanovska Dimzoska ,
Vangelica Enimiteva ,
Ljupco Angelovski ,
Zehra Hajrulai Musliu ,
Gordana Ilievska ,
Dushica Koceva ,
Aleksandra Angeleska ,
Sandra Mojsova

Mac Vet Rev 2025; 48 (2): i - xv

10.2478/macvetrev-2025-0023

Received: 16 October 2024

Received in revised form: 26 April 2025

Accepted: 29 May 2025

Available Online First: 10 June 2025

Published on: 15 October 2025

Correspondence: Elizabeta Dimitrieska Stojkovikj, edimitrieska@fvm.ukim.edu.mk

Abstract

Feed contamination can occur at every stage of the feed chain, including manufacturing, storage, transport, and utilization. Ensuring feed safety is fundamental for livestock health, animal performance, and food safety throughout the feed-to-food chain. The study aimed to make qualitative and quantitative assessment of microbiological and chemical hazards in animal feed in North Macedonia from 2018 to 2022. A total of 1,629 feed samples were analyzed for heavy metals,  mycotoxins, and coccidiostats, whereas 598 samples were examined for microbial contamination. The results indicate a  significant prevalence of heavy metals, with lead (Pb) detected in 100% of the samples, although mostly within regulatory  limits. Mycotoxins, notably ochratoxin A (OTA) and aflatoxin B1 (AFB1), were also identified, with non-compliance in  10.88% of cattle feed for AFB1. Coccidiostat residues exceeded the maximum levels in 4.6% of the samples. Microbiological  analysis revealed that 1.34% of feed samples were contaminated with Salmonella spp., and 3.8% tested positive for sulphitereducing  clostridia. The findings on both microbiological and chemical hazards indicate their potential to threaten the feed safety chain. Accordingly, this study emphasizes the need for continuous comprehensive feed safety monitoring and the  enforcement of stringent safety regulations to safeguard animal and public health in North Macedonia.

Keywords: feed safety, contaminants, coccidiostats, microbiological hazards, North Macedonia


References

  1. Sharma, V., Sharma, S., Datt, C. (2015). Potential hazards in animal feeds: safety and regulatory review. Indian J Anim Nutr. 32(3): 242-262.
  2. Dorne, JLC, Mand Fink-Gremmels, J. (2013). Human & animal health risk assessment of chemicals in the food chain: comparative aspects and future perspectives. Toxicol Appl Pharmacol. 270(3): 187-195. https://doi.org/10.1016/j.taap.2012.03.013 PMid:22484160
  3. D'Mello, JPF (2004). Microbiology of animal feeds assessing quality and safety of animal feeds, FAO, Rome, pp. 89 ̶105.
  4. Radovanov-Pelagić, V., Jurić, V., Kunc, V., Ristić, M., Koljajić, V. (1999). Relationship between microflora and amount of mycotoxins in animal feed. Contemporary Agriculture, Novi Sad, 48(1-2): 281-284. [In Serbian]
  5. Hinton, M. (1993). Spoilage and pathogenic microorganisms in animal feed. Int Biodeterior Biodegrad. 32(1-3): 67-74. https://doi.org/10.1016/0964-8305(93)90040-9
  6. Ricke, SC (2018). Chapter. 8. Feed Hygiene. In: J. Dewulf, F. Van Immerseel (Eds.), Biosecurity in animal production and veterinary medicine from principles to practice (pp. 177-209). Leuven, Belgium: ACCO (Academische Coöperative Vennootschap cvba) https://doi.org/10.1079/9781789245684.0177
  7. Đorđević, N., Dinić, B. (2007). Animal Feed. Cenzone tech-Europe, Aranđelovac [In Serbian]
  8. WHO [World Health Organization]. (2020). Compendium of WHO and other UN guidance on health and environment. Chapter 5. Chemicals. c2023 [cited 2023 October 31]. https://cdn.who.int/media/docs/default-source/who-compendiumon-health-and-environment/who_compendium_chapter5_ 01092021.pdf?sfvrsn=20ca418_5
  9. Wu, X., Cobbina, SJ, Mao, G., Xu, H., Zhang, Z., Yang, L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res. 23(9): 8244-8259. https://doi.org/10.1007/s11356-016-6333-x PMid:26965280
  10. Kim, JH (2023). Determination of safe levels and toxic levels for feed hazardous materials in broiler chickens: a review. J Anim Sci Technol. 65(3): 490-510. https://doi.org/10.5187/jast.2023.e26 PMid:37332288 PMCid:PMC10271926
  11. EFSA Panel on Contaminants in the Food Chain (CONTAM). (2012). Scientific opinion on the risk for public health related to the presence of methylmercury and mercury in food. EFSA J. 10(12): 2985. https://doi.org/10.2903/j.efsa.2012.2985
  12. Kos, J., Anić, M., Radić, B., Zadravec M., Janić Hajnal, E., Pleadin, J. (2023). Climate change-a global threat resulting in increasing mycotoxin occurrence. Foods 12(14): 2704. https://doi.org/10.3390/foods12142704 PMid:37509796 PMCid:PMC10379110
  13. Muñoz-Solano, B., Gonzáles-Peñas, E. (2023). Co-occurrence of mycotoxins in feed for cattle, pigs, poultry, and sheep in Navara, a region of Northern Spain. Toxins (Basel). 15(3): 172. https://doi.org/10.3390/toxins15030172 PMid:36977063 PMCid:PMC10057204
  14. Leggieri, MC, Toscano, P., Battilani, P. (2021). Predicted aflatoxin B1 increase in Europe due to climate change: actions and reactions at global level. Toxins 13(4): 292. https://doi.org/10.3390/toxins13040292 PMid:33924246 PMCid:PMC8074758
  15. Dimitrieska-Stojković, E., Stojanovska-Dimzoska, B., Ilievska, G., Uzunov, R., Stojković, G., Hajrulai-Musliu, Z., Jankuloski D. (2016), Assessment of aflatoxin contamination in raw milk and feed in Macedonia During 2013. Food Control. 59, 201-206. https://doi.org/10.1016/j.foodcont.2015.05.019
  16. Ilievska, G., Stojanovska-Dimzoska, B., Koceva, D., Stojković, G., Angeleska, A., Dimitrieska-Stojković, E. (2022). Dietary exposure and health risk assessment of aflatoxin M1 in dairy products consumed by the population of North Macedonia, J Food Qual Hazards Control. 9(1): 14-22. https://doi.org/10.18502/jfqhc.9.1.9686
  17. Pleadin, J., Lešić, T., Milićević D., Markov, K., Šarkanj, B., Vahčić, N., Kmetič, I., Zadravec, M. (2021). Pathways of mycotoxin occurrence in meat products: a review. Processes 9(12): 2122. https://doi.org/10.3390/pr9122122
  18. Pleadin, J., Jadrić, M., Kudumija, N., Zadravec, M., Kiš, G., Mihaljević, Ž., Škrivanko, M., Samardžija, M. (2024). Zearalenone in feed, urine and meat from three pig farms in Croatia. Vet Stanica 55(1): 1-11. https://doi.org/10.46419/vs.55.1.10
  19. Roila, R., Branciari, R., Pecorelli, I., Cristofani, E., Carloni, C., Ranucci, D., Fioroni, L. (2019). Occurrence and residue concentration of coccidiostats in feed and food of animal origin; Human exposure assessment. Foods 8(10): 447. https://doi.org/10.3390/foods8100477 PMid:31614486 PMCid:PMC6835225
  20. Dorne, JLCM, Fernández-Cruz, ML, Bertelsen, U., Renshaw, DW, Peltonen, K., Anadon, A., Feil, A., Sanders, P., Wester, P., Fink-Gremmels, J. (2013). Risk assessment of coccidiostats during feed cross contamination: Animal and human health aspects. Toxicol Appl Pharmacol. 270(3): 196-208. https://doi.org/10.1016/j.taap.2010.12.014 PMid:21215766
  21. Clarke, L., Fodey, TL, Crooks, SRH, Moloney, M., O'Mahony, J., Delahaut, P., O'Kennedy, R., Danaher, M. (2014). A review of coccidiostats and the analysis of their residues in meat and other food. Meat Sci. 97(3): 358-374. https://doi.org/10.1016/j.meatsci.2014.01.004 PMid:24534603
  22. Rulebook for the list of undesirable substances in animal food and maximum permitted level as well as critical points for conducting source identification research and the reasons for exceeding the maximum permitted level, Official Journal of RNM No. 85 from 31.03.2020.
  23. Rulebook for general and specific requirements for feed safety, Official Journal of RM No. 147 from 27.11.2012. 24. ISO 4833-1:2013 Microbiology of the food chain - Horizontal method for the enumeration of microorganisms Part 1: Colony count at 30 °C by the pour plate technique. https://www.iso.org/standard/53728.html
  24. ISO 4833-1:2013 Microbiology of the food chain - Horizontal method for the enumeration of microorganisms Part 1: Colony count at 30 °C by  the pour plate technique. https://www.iso.org/standard/53728.html
  25. ISO 21527-2:2008 Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of yeasts and molds - Part 2: Colony count technique in products with water activity less than or equal to 0.95. https://www.iso.org/standard/38276.html
  26. ISO 15213:2003 Microbiology of the food chain - Horizontal method for the detection and enumeration of Clostridium spp. - Part 1: Enumeration of sulfite-reducing Clostridium spp. by colony-count technique. https://www.iso.org/standard/26852.html
  27. ISO 6579-1:2017 Microbiology of the food chain - Horizontal method for the detection, enumeration and serotyping of Salmonella - Part 1: Detection of Salmonella spp. https://www.iso.org/standard/56712.html
  28. International Organization for Standardization (1999). ISO 6496:1999 - Animal feeding stuffs - Determination of moisture and other volatile matter content. https://www.iso.org/standard/12871.html
  29. CEN 2003, EN 14084, Foodstuffs - Determination of trace elements - Determination of lead, cadmium, zinc, copper and iron by atomic absorption spectrometry (AAS) after microwave digestion, European Committee for Standardization, 2003. https://standards.iteh.ai/catalog/standards/cen/446d0bd2-4c65-4d15-a586-852f4a653f70/en-14084-2003?srsltid=AfmBOooMj_Dd74K3FwTQ2dZpTyc3YF pbQBYrSf7oxKgSCl3BvXx6EhiK
  30. CEN 2002, EN 13086, Foodstuffs - Determination of trace elements - Determination of mercury by cold vapor atomic absorption spectrometry (CVAAS) after pressure digestion, European Committee for Standardization, 2002. https://standards.iteh.ai/catalog/standards/cen/a62f2c3c-cbea-4861-830f-448c7d80ae75/en-13806-2002?srsltid=AfmBOoo38ECsJEEJwAKvNH8lQvcUwdQbaLTTmIplEaYXLkAZj88ot6H4
  31. Stojanovska-Dimzoska, B., Hajrulai-Musliu, Z., Uzunov, R., Angeleska, A., Blagoevska, K., Crceva Nikolovska, R., Ilievska, G., Dimitrieska-Stojkovikj, E. (2022). Study on the effectiveness of a multi-toxin immunoaffinity cleanup for reliable cost-effective HPLC-FLD analysis of mycotoxins in corn based food. Maced J Chem Chem Eng. 41(1): 77-88. https://doi.org/10.20450/mjcce.2022.2422
  32. Waters Corporation (2013). The analysis of coccidiostatic agents in feed using the ACQUITY UPLC I-class and XEVO TQ-S, application note 720004769en, August 2013. c2013 [cited 2019 December 27]. https://www.waters.com/waters/library.htm?cid=10160596&lid=134757454
  33. Elliott, S., Frio, A., Jarman T. (2017). Heavy metal contamination of animal feedstuffs - a new survey. J Appl Anim Nutr. 5(8): 1-15. https://doi.org/10.1017/jan.2017.7
  34. Iqbal, H., Shafique, MA, Khan, MJ (2023). Evaluation of heavy metals concentration in poultry feed and poultry products. Saudi J Med Pharm Sci. 9(7): 489-495. https://doi.org/10.36348/sjmps.2023.v09i07.019
  35. Korish, MA, Attia, YA (2020). Evaluation of heavy metal content in feed, litter, meat, meat products, liver and table eggs. Animals 10(4): 727. https://doi.org/10.3390/ani10040727 PMid:32331361 PMCid:PMC7222721
  36. Hejna, M., Moscatelli, A., Onelli, E., Baldi, A., Pilu, S., Rossi, L. (2019). Evaluation of concentration of heavy metals in animal rearing system. Ital J Anim Sci. 18(1): 1372-1384. https://doi.org/10.1080/1828051X.2019.1642806
  37. Wang, H., Dong, Y., Yang, YS, Toor, G., Zhang, X. (2013). Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. J Environ Sci. 25(12): 2435-2442. https://doi.org/10.1016/S1001-0742(13)60473-8 PMid:24649675
  38. Adamse, P., Van der Fels-Klerx, HJ, de Jong, J. (2017). Cadmium, lead, mercury and arsenic in animal feed and feed materials - trend analysis of monitoring results. Food Addit Contam: Part A. 34(8): 1298-1311. https://doi.org/10.1080/19440049.2017.1300686 PMid:28278122
  39. Zhang, F., Li, Y., Yang, M., Li, W. (2012). Content of heavy metals in animal feeds and manures from farms of different scales in northeast China. Int J Environ Res Publ. Health. 9(8): 2658-2668. https://doi.org/10.3390/ijerph9082658 PMid:23066389 PMCid:PMC3447579
  40. Sdogati, S., Pacini, T., Bibi, R., Caporali, A., Vardini, E., Orsini, S., Ortenzi, R., Pecorelli, I. (2024). Co-occurrence of aflatoxin B1, zearalenone and ochratoxin A in feed and feed materials in Central Italy from 2018-2022. Foods 13(2): 313. https://doi.org/10.3390/foods13020313 PMid:38254614 PMCid:PMC10815256
  41. Santos Pereira, C., Cunha, SC, Fernandes, JO (2019). Prevalent mycotoxins in animal feed: occurrence and analytical methods. Toxins 11(5): 290. https://doi.org/10.3390/toxins11050290 PMid:31121952 PMCid:PMC6563184
  42. Pietruk, K., Olejnik, M., Jedziniak, P., Szprengier-Juszkiewicz, T. (2015). Determination of fifteen coccidiostats in feed at carry-over levels using liquid chromatography-mass spectrometry. J Pharm Biomed Anal. 112, 50-59. https://doi.org/10.1016/j.jpba.2015.03.019 PMid:25958138
  43. Delahaut, P., Pierret, G., Ralet, N., Dubois, M., Gillard, N. (2010). Multi-residue method for detecting coccidiostats at carry-over level in feed by HPLC-MS/MS. Food Addit Contam A Chem Anal Control Expo Risk Assess. 27(6): 801-809. https://doi.org/10.1080/19440040903552408 PMid:20198524
  44. Annunziata, L., Visciano, P., Stramenga, A., Colagrande, MN, Campana, G., Scortichini, G., Migliorati, G., Compagnone, D. (2017). Determination of regulatory ionophore coccidiostat residues in feedstuffs at carry-over levels by liquid chromatography-mass spectrometry. PLoS ONE. 12(8): e0182831. https://doi.org/10.1371/journal.pone.0182831 PMid:28792977 PMCid:PMC5549955
  45. Moretti, S., Fioroni, L., Giusepponi, D., Pettinacci, L., Saluti, G., Galarini, R. (2013). Development and validation of a multiresidue liquid chromatography/tandem mass spectrometry method for 11 coccidiostats in feed. J. AOAC Int. 96(6): 1245-1257. https://doi.org/10.5740/jaoacint.12-440 PMid:24645501
  46. Wojdat, E., Kwiatek, K., Kozak, M. (2005). Microbiological quality of animal feeding stuffs in Poland. Bull Vet Inst Pulawy. 49(3): 315-318.
  47. Čabarkapa, I., Kokić, B., Plavšić, D., Ivanov, D., Lević, J. (2009). Microbiological safety of animal feed. Biotechnol Anim Husb. 25(5-6): 1155-1162.
  48. Maciorowski, KG, Herrera, P., Jones, FT, Pillai, SD, Ricke, SC (2007). Effects on poultry and livestock of feed contamination with bacteria and fungi. Anim Feed Sci Technol. 133(1): 109-136. https://doi.org/10.1016/j.anifeedsci.2006.08.006
  49. Udhayavel, S., Gopalakrishnamurthy, TR, Vasudevan, G., Shanmugasamy, M., Kandasamy, S. (2017). Occurrence of Clostridium Perfringens contamination in poultry feed ingredients: isolation, identification and its antibiotic sensitivity pattern. Anim Nutr. 3(3): 309-312. https://doi.org/10.1016/j.aninu.2017.05.006 PMid:29767074 PMCid:PMC5941237
  50. Sapkota, AR, Lefferts, LY, McKenzie, S., Walker, P. (2007). What do we feed to food-producing animals? A review of animal feed ingredients and their potential impacts on human health. Environ Health Persp. 115(5): 663-670. https://doi.org/10.1289/ehp.9760 PMid:17520050 PMCid:PMC1867957
  51. Kukier, E., Goldsztejn, M., Grenda, T., Krzysztof, K., Wasyl, D., Hoszowski, A. (2012). Microbiological quality of compound feed used in Poland. J Vet Res. 56(3): 349-354. https://doi.org/10.2478/v10213-012-0061-x
  52. Liebana, E., Hugas, M. (2012). 5-Assessment of the microbiological risks in feedingstuffs for food-producing animals. In J. Fink-Gremmels (Ed.), Woodhead Publishing Series in Food Science, Technology and Nutrition, Animal Feed Contamination (pp. 66-93). Woodhead Publishing https://doi.org/10.1533/9780857093615.1.66
  53. Jones, FT (2011). A review of practical Salmonella control measures in animal feed. J Appl Poult Res. 20(1): 102-113. https://doi.org/10.3382/japr.2010-00281
  54. Vestby, LK, Møretrø, T., Langsrud, S., Heir, E., Nesse, LL (2009). Biofilm forming abilities of Salmonella are correlated with persistence in fish meal-and feed factories. BMC Vet Res. 5, 20. https://doi.org/10.1186/1746-6148-5-20 PMid:19473515 PMCid:PMC2693496


Copyright

©2025 Dimitrieska Stojkovikj E. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 48, Issue 2, Pages i-xv, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI:  https://doi.org/10.2478/macvetrev-2025-0023