Original Scientific Article
Evaluation of some intestinal mucosal epithelial barrier damage biomarkers in dogs with giardiasis
Murat Kaan Durgut * ,
Mahmut Ok ,
Merve Ider ,
Amir Naseri ,
Yusuf Emre Ekici ,
Suleyman Serhat Iyigun ,
Nimet Ismailoglu ,
Rumeyhisa Ozlem Bicici

Mac Vet Rev 2025; 48 (2): i - vii

10.2478/macvetrev-2025-0024

Received: 13 November 2024

Received in revised form: 01 March 2025

Accepted: 18 June 2025

Available Online First: 02 July 2025

Published on: 15 October 2025

Correspondence: Murat Kaan Durgut, mkaan.durgut@selcuk.edu.tr
PDF HTML

Abstract

Giardia intestinalis is a parasitic protozoan commonly seen in dogs and causes intestinal mucosal barrier damage. In this study, serum intestinal fatty acid binding protein (I-FABP), intestinal alkaline phosphatase (IAP), and intestinal trefoil factor-3 (TFF-3) concentrations were assessed in Giardia intestinalis -infected dogs to determine their association with intestinal mucosal epithelial barrier damage and their potential to be used as a non-invasive diagnostic method. The study was conducted on 39 dogs (26 with giardiasis and 13 healthy dogs) of different breeds and sex. Giardiasis was diagnosed from fecal samples by rapid antigen test kit and fecal flotation test. Serum I-FABP (p=0.024), IAP (p=0.04), and TFF-3 (p=0.028) levels were significantly higher in dogs with giardiasis compared to the healthy group. These findings indicate that Giardia infection causes damage to the intestinal mucosa which triggers the release of these compounds as a protective mechanism. The positive correlation between the biomarkers and the giardiasis infection in dogs, indicate that they could be used as a non-invasive diagnostic method.

Keywords: Giardia,dogs,I-FABP,IAP,TFF-3


References

  1. Solarczyk, P., Majewska, AC (2010). A survey of the prevalence and genotypes of Giardia duodenalis infecting households and sheltered dogs. Parasitol Res. 106(5): 1015-1019. https://doi.org/10.1007/s00436-010-1766-5 PMid:20155370
  2. Boucard, AS, Thomas, M., Lebon, W., Polack, B., Florent, I., Langella, P., Bermudez-Humaran, LG (2021). Age and Giardia intestinalis infection impact canine gut microbiota. Microorganisms. 9(9): 1862. https://doi.org/10.3390/microorganisms9091862 PMid:34576757 PMCid:PMC8469385
  3. Einarsson, , Ma'ayeh, S., Svard, SG (2016). An update on Giardia and giardiasis. Curr Opin Microbiol. 34, 47-52. https://doi.org/10.1016/j.mib.2016.07.019 PMid:27501461
  4. Ballweber, LR, Xiao, LH, Bowman, DD, Kahn, G., Cama, A. (2010). Giardiasis in dogs and cats: update on epidemiology and public health significance. Trends Parasitol. 26(4): 180-189. https://doi.org/10.1016/j.pt.2010.02.005 PMid:20202906
  5. Ortega-Pierres, G., Jex, AR, Ansell, BRE, Svard, SG (2018). Recent advances in the genomic and molecular biology of Giardia. Acta Trop. 184, 67-72. https://doi.org/10.1016/j.actatropica.2017.09.004 PMid:28888474
  6. Adam, D. (2021). Giardia duodenalis: biology and pathogenesis. Clin Microbiol Rev. 34(4): e00024-19. https://doi.org/10.1128/CMR.00024-19 PMid:34378955 PMCid:PMC8404698
  7. Cotton, JA, Beatty, JK, Burett, AG (2011). Host-parasite interactions and pathophysiology in Giardia infections. Int J Parasitol. 41(9): 925-933. https://doi.org/10.1016/j.ijpara.2011.05.002 PMid:21683702
  8. Dixon, BR (2021). Giardia duodenalis in humans and animals - Transmission and disease. Res Vet Sci. 135, 283-289. https://doi.org/10.1016/j.rvsc.2020.09.034 PMid:33066992
  9. Thompson, RCA, Palmer, CS, O'Handley, R. (2008). The public health and clinical significance of Giardia and Cryptosporidium in domestic animals. Vet J. 177(1): 18-25. https://doi.org/10.1016/j.tvjl.2007.09.022 PMid:18032076 PMCid:PMC7128580
  10. Yildiz, IK, Ok, M. (2022). Investigation of biomarkers indicating intestinal damage in Isospora-infected dogs. Hungarian Vet J. 144(2): 101-113. [In Hungarian]
  11. Yildiz, R., Ok, M., Ider, M., Akar, A., Naseri, A., Koral, E. (2019). The changes in biomarkers for necrotising enterocolitis in premature calves with respiratory distress syndrome. Vet Med. 64(10): 440-447. https://doi.org/10.17221/37/2019-VETMED
  12. Yildiz, R., Ok, M., Ider, M., Aydin, U., Naseri, A., Parlak, K., Gulersoy, E. (2018). Evaluation of intestinal damage biomarkers in calves with atresia coli. J Vet Res. 62(3): 379-384. https://doi.org/10.2478/jvetres-2018-0054 PMid:30584620 PMCid:PMC6295999
  13. Gulersoy, E., Ok, M., Yildiz, R., Koral, E., Ider, M., Sevinc, M., Zhunushova, A. (2020). Assessment of intestinal and cardiac-related biomarkers in dogs with parvoviral enteritis. Pol J Vet Sci. 23(2): 211-219. https://doi.org/10.24425/pjvs.2020.133635 PMid:32627989
  14. Ok, M., Yildiz, R., Hatipoglu, F., Baspinar, N., Ider, M., Uney, K., Erturk, A., Durgut, MK, Terzi, F. (2020). Use of intestine-related biomarkers for detecting intestinal epithelial damage in neonatal calves with diarrhea. Am J Vet Res. 81(2): 139-146. https://doi.org/10.2460/ajvr.81.2.139 PMid:31985285
  15. Durgut, MK, Ok, M. (2023). Evaluation of some intestinal biomarkers in the determination of intestinal damage in calves with coccidiosis. Trop Anim Sci J. 46(2): 221-230. https://doi.org/10.5398/tasj.2023.46.2.221
  16. Ekici, YE, Ok, M. (2024). Investigation of the relationship between atopic dermatitis of dogs and intestinal epithelial damage. Vet Med Sci. 10(3): e1453. https://doi.org/10.1002/vms3.1453 PMid:38648253 PMCid:PMC11034634
  17. Foreyt, WJ (2013). Veterinary parasitology reference manual. John Wiley & Sons
  18. Coe, NR, Bernlohr, DA (1998). Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim Biophys Acta. 1391(3): 287-306. https://doi.org/10.1016/S0005-2760(97)00205-1
  19. Guzman-Guzman, IP, Nogueda-Torres, B., Zaragoza-Garcia,O.,Navarro-Zarza,JE,Briceno,O., Perez-Rubio, G., Falfan-Valencia, R., et al. (2022). The infection, coinfection, and abundance of intestinal protozoa increase the serum levels of IFABP2 and TNF-α in patients with rheumatoid arthritis. Front Med. 9, 846934. https://doi.org/10.3389/fmed.2022.846934 PMid:35492365 PMCid:PMC9039364
  20. Ludwig, EK, Hobbs, KJ, McKinney-Aguirre, CA, Gonzalez, LM (2023). Biomarkers of intestinal injury in colic. Animals (Basel). 13(2): 227. https://doi.org/10.3390/ani13020227 PMid:36670767 PMCid:PMC9854801
  21. Sarikaya, M., Ergul, B., Dogan, Z., Filik, L., Can, M., Arslan, L. (2015). Intestinal fatty acid binding protein (I-FABP) as a promising test for Crohn's disease: A preliminary study. Clin Lab. 61(1-2): 87-91. https://doi.org/10.7754/Clin.Lab.2014.140518 PMid:25807642
  22. Oldenburger, IB, Wolters, VM, Kardol-Hoefnagel, T., Houwen, RHJ, Otten, HG (2018). Serum intestinal fatty acid-binding protein in the noninvasive diagnosis of celiac disease. APMIS 126(3): 186-190. https://doi.org/10.1111/apm.12800 PMid:29383769
  23. Cascais-Figueiredo, T., Austriaco-Teixeira, P., Fantinatti, M., Silva-Freitas, ML, Santos-Oliveira, JR, Coelho, CH, Singer, SM, Da-Cruz, AM (2020). Giardiasis alters intestinal fatty acid binding protein (I-FABP) and plasma cytokine levels in children in Brazil. Pathogens. 9(1): 7. https://doi.org/10.3390/pathogens9010007 PMid:31861618 PMCid:PMC7169386
  24. Straarup, D., Gotschalck, KA, Christensen, PA, Krarup, H., Lundbye-Christensen, S., Handberg, A., Thorlacius-Ussing, O. (2023). Exploring I-FABP, endothelin-1 and L-lactate as biomarkers of acute intestinal necrosis: a case-control study. Scand J Gastroenterol. 58(12): 1359-1365. https://doi.org/10.1080/00365521.2023.2229930 PMid:37403410
  25. Ay,CD,Tuna,GE,Asici,GSE,Ulutas,B.,Voyvoda,H. (2022). Serum intestinal fatty acid-binding protein and calprotectin concentrations to assess clinical severity and prognosis of canine parvovirus enteritis. Kafkas Univ Vet Fak Derg. 28(1): 105-114.
  26. Goldberg, RF, Austen, WG, Zhang, XB, Munene, G., Mostafa, G., Biswas, S., McCormack, M., et al. (2008). Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA 105(9): 3551-3556. https://doi.org/10.1073/pnas.0712140105 PMid:18292227 PMCid:PMC2265168
  27. Kuhn, F., Adiliaghdam, F., Cavallaro, PM, Hamarneh, SR, Tsurumi, A., Hoda, RS, Munoz, AR, et al. (2020). Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight. 5(6): 134049. https://doi.org/10.1172/jci.insight.134049 PMid:32213701 PMCid:PMC7213802
  28. Martins, RDS, Kooi, EMW, Poelstra, K., Hulscher, JBF (2023). The role of intestinal alkaline phosphatase in the development of necrotizing enterocolitis. Early Hum Dev. 183, 105797. https://doi.org/10.1016/j.earlhumdev.2023.105797 PMid:37300991
  29. Rentea, RM, Liedel, JL, Fredrich, K., Pritchard, KT Jr., Oldham, KT, Simpson, PM, Gourlay, DM (2013). Enteral intestinal alkaline phosphatase administration in newborns decreases iNOS expression in a neonatal necrotizing enterocolitis rat model. J Pediatr Surg. 48(1): 124-128. https://doi.org/10.1016/j.jpedsurg.2012.10.026 PMid:23331804 PMCid:PMC5664149
  30. Biesterveld, BE, Koehler, SM, Heinzerling, NP, Rentea, RM, Fredrich, K., Welak, SR, Gourlay, DM (2015). Intestinal alkaline phosphatase to treat necrotizing enterocolitis. J Surg Res. 196(2): 235-240. https://doi.org/10.1016/j.jss.2015.02.030 PMid:25840489 PMCid:PMC4578817
  31. Molnar, K., Vannay, A., Szebeni, B., Banki, NF, Sziksz, E., Cseh, A., Gyorffy, H., et al. (2012). Intestinal alkaline phosphatase in the colonic mucosa of children with inflammatory bowel disease. World J Gastroenterol. 18(25): 3254-3259.
  32. Park, SY, Kim, JY, Lee, SM, Chung, JO, Seo, JH, Kim, S., Kim, DH, et al. (2018). Lower expression of endogenous intestinal alkaline phosphatase may predict worse prognosis in patients with Crohn's disease. BMC Gastroenterol. 18(1): 188. https://doi.org/10.1186/s12876-018-0904-x PMid:30558547 PMCid:PMC6296121
  33. Thim, L. (1994). Trefoil peptides: a new family of gastrointestinal molecules. Digestion. 55(6): 353-360. https://doi.org/10.1159/000201165 PMid:7705547
  34. Ng, EWY, Poon, TCW, Lam, HS, Cheung, HM, Ma, TPY, Chan, KYY, Wong, RPO, et al. (2013). Gut-associated biomarkers L-FABP, I-FABP, and TFF3 and LIT score for diagnosis of surgical necrotizing enterocolitis in preterm infants. Ann Surg. 258(6): 1111-1118. https://doi.org/10.1097/SLA.0b013e318288ea96 PMid:23470582
  35. Srivastava, S., Kedia, S., Kumar, S., Mouli, VP, Dhingra, R., Sachdev, V., Tiwari, V., et al. (2015). Serum human trefoil factor 3 is a biomarker for mucosal healing in ulcerative colitis patients with minimal disease activity. J Crohns Colitis. 9(7): 575-579. https://doi.org/10.1093/ecco-jcc/jjv075 PMid:25964429


Copyright

© 2025 Durgut MK This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interest exist.

Citation Information

Macedonian Veterinary Review. Volume 48, Issue 2, Pages i-vii, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI:  https://doi.org/10.2478/macvetrev-2025-0024