Original Scientific Article
Swine influenza А virus (swIAV) seroprevalence in Macedonian commercial farrow-to-finish pig farms
Branko Angjelovski * ,
Miroslav Kjosevski ,
Aleksandar Janevski ,
Jovan A. Bojkovski ,
Aleksandar Dodovski

Mac Vet Rev 2025; 48 (2): i - ix

10.2478/macvetrev-2025-0025

Received: 20 February 2025

Received in revised form: 17 April 2025

Accepted: 02 June 2025

Available Online First: 24 July 2025

Published on: 15 October 2025

Correspondence: Branko Angjelovski, brankoa@fvm.ukim.edu.mk
PDF HTML

Abstract

Swine influenza caused by the influenza A virus significantly affects pig production and pig health due to acute respiratory disease and huge economic losses. Pigs play an essential role in the epidemiology of influenza because they act as a mixing vessel for the formation of potentially pandemic zoonotic strains. The objective of our study was to assess the seroprevalence of Swine influenza A viruses (swIAV) in commercial pig farms in Macedonia. A total of 373 blood samples were collected from piglets aged 1 to 4 weeks of sows with different parities from 19 different commercial farrow-to-finish pig farms. For the detection of anti-IAV antibodies, sera samples were analyzed using a competitive ELISA. All farms were seropositive to swIAV. Seropositivity was detected in 258 (69.2%) samples, ranging between 10 and 100% at farm level. The highest seroprevalence was found in piglets from sows in the 5-6th parity. In contrast, the lowest seropositivity was found in samples from the youngest sows (1-2nd parity), which indicates that the virus has circulated for a longer period in these farms. Furthermore, large farms with more than 120 sows had a significantly greater percentage of seropositive animals than small farms with less than 120 breeding sows (83% vs. 54%, respectively). In conclusion, our results demonstrated that swIAV circulates endemically in Macedonian commercial farrow-to-finish pig farms, underscoring the need of immunization in preventing infection on these farms.

Keywords: Swine influenza A virus, seroprevalence, pigs, commercial farms, Macedonian


References

  1. Er, C., Skjerve, E., Brun, E., Hofmo, PO, Framstad, T., Lium, B. (2016). Production impact of influenza A(H1N1) pdm09 virus infection on fattening pigs in Norway. J Anim Sci. 94(2): 751-759. https://doi.org/10.2527/jas.2015-9251 PMid:27065145 PMCid:PMC7109966
  2. Gumbert, S., Froehlich, S., Rieger, A., Stadler, J., Ritzmann, M., Zoels, S. (2020). Reproductive performance of pandemic influenza A virus infected sow herds before and after implementation of a vaccine against the influenza A (H1N1)pdm09 virus. Porc Health Manag. 6, 4. https://doi.org/10.1186/s40813-019-0141-x PMid:31993212 ОMCid:PMC6977244
  3. Petro-Turnquist, E., Pekarek, MJ, Weaver, EA (2024). Swine influenza A virus: challenges and novel vaccine strategies. Front Cell Infect Microbiol. 14, 1336013. https://doi.org/10.3389/fcimb.2024.1336013 PMid:38633745 PMCid:PMC11021629
  4. Simon, G., Larsen, LE, Dürrwald, R., Foni, E., Harder, T., Van Reeth, K., Markowska, DI, et al. (2014). European surveillance network for influenza in pigs: surveillance programs, diagnostic tools and swine influenza virus subtypes identified in 14 European countries from 2010 to 2013. PLoS One. 9(12): e115815. https://doi.org/10.1371/journal.pone.0115815 PMid:25542013 PMCid:PMC4277368
  5. Henritzi, D., Petric, PP, Lewis, NS, Graaf, A., Pessia, A., Starick, E., Breithaupt, A., et al. (2020). Surveillance of European domestic pig populations identifies an emerging reservoir of potentially zoonotic swine influenza A viruses. Cell Host Microbe. 28(4): 614-627.e6. https://doi.org/10.1016/j.chom.2020.07.006
  6. Lewis, NS, Russell, CA, Langat, P., Anderson, TK, Berger, K., Bielejec, F., Burke, DF, et al. (2016). The global antigenic diversity of swine influenza A viruses. eLife. 5, e12217. https://doi.org/10.7554/eLife.12217 PMid:27113719 PMCid:PMC4846380
  7. Ma, W., Kahn, RE, Richt, JA (2008). The pig as a mixing vessel for influenza viruses: Human and veterinary implications. J Mol Genet Med. 3(1): 158-166.
  8. Van Reeth, K., Vincent, AL (2019). Influenza viruses. In: JJ Zimmerman, LA Karriker, A. Ramirez, KJ Schwartz, GW Stevenson, Z. Jianqiang (Eds.), Diseases of swine, 11th ed. (pp.393-407). New York: Wiley-Blackwell
  9. Rose, N., Hervé, S., Eveno, E., Barbier, N., Eono, F., Dorenlor, V., Andraud, M., et al. (2013). Dynamics of influenza A virus infections in permanently infected pig farms: evidence of recurrent infections, circulation of several swine influenza viruses and reassortment events. Vet Res. 44(1): 72. https://doi.org/10.1186/1297-9716-44-72 PMid:24007505 PMCid:PMC3846378
  10. Diaz, A., Marthaler, D., Corzo, C., Muñoz-Zanzi, C., Sreevatsan, S., Culhane, M., Torremorell, M. (2017). Multiple genome constellations of similar and distinct influenza A viruses co-circulate in pigs during epidemic events. Sci Rep. 7, 11886. https://doi.org/10.1038/s41598-017-11272-3 PMid:28928365 PMCid:PMC5605543
  11. Van Reeth, K. Brown, IH, Olse, CW (2012). Influenza virus. In: JJ Zimmerman, AL Karriker, A. Ramirez, JK Schwartz, WG Stevenson (Eds.), Diseases of Swine 10th ed. (pp. 273-293). Oxford, UK: Wiley-Blackwell
  12. Van Alstine, WG (2012). Respiratory system. In: JJ Zimmerman, LA Karriker, A. Ramirez, KJ Schwartz, GW Stevenson (Eds.), Diseases of swine, 10th ed. (pp. 348-362). Ames, IA: Wiley Blackwell Publishing
  13. Lagan, P., Hamil, M., Cull, S., Hanrahan, A., Wregor, R.M., Lemon, K. (2024). Swine influenza A virus infection dynamics and evolution in intensive pig production systems. Virus Evol. 10(1): veae017. https://doi.org/10.1093/ve/veae017 PMCid:PMC10930190
  14. Chamba Pardo, F.O., Wayne, S., Culhane, M.R., Perez, A., Allerson, M., Torremorell, M. (2019). Effect of strain-specific maternally-derived antibodies on influenza A virus infection dynamics in nursery pigs. PLoS One. 14(1): e0210700. https://doi.org/10.1371/journal.pone.0210700 PMid:30640929 PMCid:PMC6331129
  15. Lillie-Jaschniski, K., Lisgara, M., Pileri, E., Jardin, A., Velazquez, E., Köchling, M., et al. (2022). A new sampling approach for the detection of swine influenza a virus on European sow farms. Vet Sci. 9(7): 338. https://doi.org/10.3390/vetsci9070338 PMid:35878355 PMCid:PMC9324471
  16. Simon-Grifé, M., Martín-Valls, G.E., Vilar, M.J., García-Bocanegra, I., Mora, M., Martín, M., Mateu, E., Casal, J. (2011). Seroprevalence and risk factors of swine influenza in Spain. Vet Microbiol. 149(1-2): 56-63. https://doi.org/10.1016/j.vetmic.2010.10.015 PMid:21112702
  17. Takemae, N., Shobugawa, Y., Nguyen, P.T., Nguyen, T., Nguyen, T.N., To, T.L., Thai, P.D., et al. (2016). Effect of herd size on subclinical infection of swine in Vietnam with influenza A viruses. BMC Vet Res. 12, 227. https://doi.org/10.1186/s12917-016-0844-z PMid:27724934
  18. Van Reeth, K., Brown, I.H., Dürrwald, R., Foni, E., Labarque, G., Lenihan, P., Markowska, D.I., et al. (2008). Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003. Influenza Other Respir Viruses. 2(3): 99-105. https://doi.org/10.1111/j.1750-2659.2008.00043.x PMid:19453469 PMCid:PMC4634697
  19. Chauhan, R.P., Gordon, M.L. (2020). A systematic review analyzing the prevalence and circulation of influenza viruses in swine population worldwide. Pathogens. 9(5): 355. https://doi.org/10.3390/pathogens9050355 PMid:32397138 PMCid:PMC7281378
  20. Papatsiros, V.G., Papakonstantinou, G.I., Meletis, E., Koutoulis, K., Athanasakopoulou, Z., Maragkakis, G., Labronikou, G., Terzidis, I., Kostoulas, P., Billinis, C. (2023). Seroprevalence of swine influenza A virus (swIAV) infections in commercial farrow-to-finish pig farms in Greece. Vet Sci. 10(10): 599. https://doi.org/10.3390/vetsci10100599 PMid:37888551 PMCid:PMC10610732
  21. Maksimović Zoric, J., Milićević, V., Veljović, L., Radosavljević, V., Kureljušić, B., Stevančević, O., Chiaponi, C. (2023). Genetic analysis of influenza A viruses in pigs from commercial farms in Serbia. Vet Ital. 59 (2). https://doi.org/10.12834/VetIt.2712.17810.2
  22. Angjelovski, B., Orenga, C.M., Janevski, A., Dodovski, A., Prodanovic, R., Bojkovski, J. (2023). Profiling Mycoplasma hyopneumoniae infection in commercial pig farms using serology and lung lesions assessment. Mac Vet Rev. 46(2): 129-135. https://doi.org/10.2478/macvetrev-2023-0018
  23. MAKSTAT database: https://makstat.stat.gov.mk
  24. Statistica (Data Analysis Software System). 2007. v.8.0., StatSoft, Inc., USA (www.statsoft.com).
  25. Hailpern, S.M., Visintainer, P.F. (2003). Odds ratios and logistic regression: further examples of their use and interpretation. Stata J StataCorp LLC. 3(3): 213-225. https://doi.org/10.1177/1536867X0300300301
  26. Markowska-Daniel, I., Pomorska-Mól, M., Pejsak, Z. (2011). The influence of age and maternal antibodies on the postvaccinal response against swine influenza viruses in pigs. Vet Immunol Immunopathol. 142(1-2): 81-86. https://doi.org/10.1016/j.vetimm.2011.03.019 PMid:21501880
  27. Cador, C., Hervé, S., Andraud, M., Gorin, S., Paboeuf, F., Barbier, N., Quéguiner, S., et al. (2016). Maternally-derived antibodies do not prevent transmission of swine influenza A virus between pigs. Vet Res. 47, 86. https://doi.org/10.1186/s13567-016-0365-6 PMid:27530456 PMCid:PMC4988049
  28. Ferreira, M.V., Gava, D., Schaefer, R., Pierozan, R.L., Zanella, J.R.C. (2022). Influenza A virus circulation in pig nurseries in the state of Santa Catarina, Brazil. Pesq Agropec Bras. 57, e02816. https://doi.org/10.1590/s1678-3921.pab2022. v57.02816
  29. Serafini Poeta Silva, A.P., De Freitas Costa, E., Sousa E Silva, G., Souza, C.K., Schaefer, R., Da Silva Vaz, I., Corbelini, L.G. (2019). Biosecurity practices associated with influenza A virus seroprevalence in sows from southern Brazilian breeding herds. Prev Vet Med. 166, 1-7. https://doi.org/10.1016/j.prevetmed.2019.02.013
  30. Jungić, A., Savić, V., Madić, J., Barbić, L., Roić, B., Brnić, D., Prpic, J., et al. (2021). Improving current knowledge on seroprevalence and genetic characterization of swine influenza virus in Croatian pig farms: a retrospective study. Pathogens. 10(11): 1527. https://doi.org/10.3390/pathogens10111527 PMid:34832682 PMCid:PMC8623915
  31. Poljak, Z., Dewey, C.E., Martin, S.W., Christensen, J., Carman, S., Friendship, R.M. (2008). Prevalence of and risk factors for influenza in southern Ontario swine herds in 2001 and 2003. Can J Vet Res. 72(1): 7-17.
  32. Grøntvedt, C.A., Er, C., Gjerset, B., Hauge, A.G., Brun, E., Jørgensen, A., Lium, B., Framstad, T. (2013). Influenza A(H1N1)pdm09 virus infection in Norwegian swine herds 2009/10: The risk of human to swine transmission. Prev Vet Med. 110(3-4): 429-434. https://doi.org/10.1016/j.prevetmed.2013.02.016 PMid:23490143 PMCid:PMC7132443
  33. Quesnel, H. (2011). Colostrum production by sows: variability of colostrum yield and immunoglobulin G concentrations. Animal 5(10): 1546-1553. https://doi.org/10.1017/S175173111100070X PMid:22440345
  34. Quesnel, H., Farmer, C., Theil, P.K. (2015). Colostrum and milk production. In: C. Farmer, (Ed.), The gestating and lactating sow (pp. 173-192). Wageningen, the Netherlands: Wageningen Academic Publishers https://doi.org/10.3920/9789086868032_009
  35. D'Allaire, S., Drolet, R. (2006). Longevity in breeding animals. In B.E. Straw, J.J. Zimmerman, S. D'Allaire., et al. (Eds). Diseases of Swine, 9th ed. (pp. 1011-1025). Ames, IA: Blackwell Publishing
  36. Ciuoderis-Aponte, K., Diaz, A., Muskus, C., Peña, M., Hernández-Ortiz, J., Osorio, J. (2022). Farm management practices, biosecurity and influenza a virus detection in swine farms: a comprehensive study in Colombia. Porcine Health Manag. 8(1): 42. https://doi.org/10.1186/s40813-022-00287-6 PMid:36199147 PMCid:PMC9532805
  37. Maes, D., Deluyker, H., Verdonck, M., Castryck, F., Miry, C., Vrijens, B., de Kruf, A. (2000). Herd factors associated with the seroprevalences of four major respiratory pathogens in slaughter pigs from farrow-to-finish pig herds. Vet Res. 31(3): 313-327. https://doi.org/10.1051/vetres:2000122 PMid:10863948
  38. Gardner, I.A., Willeberg, P., Mousing, J. (2002). Empirical and theoretical evidence for herd size as a risk factor for swine diseases. Anim Health Res Rev. 3(1): 43-55. https://doi.org/10.1079/AHRR200239 PMid:12400869
  39. Senthilkumar, D., Kulkarni, D.D., Venkatesh, G., Gupta, V., Patel, P., Dixit, M., Bhatia, S., et al. (2021). Widespread prevalence of antibodies against swine influenza A (pdm H1N1 09) virus in pigs of Eastern Uttar Pradesh, India. Curr Microbiol. 78(7): 2753-2761. https://doi.org/10.1007/s00284-021-02520-x PMCid:PMC8150629
  40. Ma, MJ, Wang, GL, Anderson, BD, Bi, ZQ, Lu, B., Wang, XJ, Wang, CX, et al. (2018). Evidence for cross-species influenza A virus transmission within swine farms, China: a one health, prospective cohort study. Clin Infect Dis. 66(4): 533-540. https://doi.org/10.1093/cid/cix823 PMid:29401271
  41. White, LA, Torremorell, M., Craft, ME (2017). Influenza A virus in swine breeding herds: combination of vaccination and biosecurity practices can reduce the likelihood of endemic piglet reservoir. Prev Vet Med. 138, 55-69. https://doi.org/10.1016/j.prevetmed.2016.12.013 PMid:28237236
  42. Duffy, SJ, Morrison, RB, Thawley, DG (1991). Spread of pseudorabies virus among breeding swine in quarantined herds. J Am Vet Med Assoc. 199(1): 61-65. https://doi.org/10.2460/javma.1991.199.01.61 PMid:1653189
  43. Fitzgerald, RM, O'Shea, H., Manzanilla, EG, Moriarty, J., McGlynn, H., Calderón Díaz, JA (2020). Associations between animal and herd management factors, serological response to three respiratory pathogens and pluck lesions in finisher pigs on a farrow-to-finish farm. Porcine Health Manag. 6(1): 34. https://doi.org/10.1186/s40813-020-00173-z PMid:33292673 PMCid:PMC7722331
  44. Torremorell, M., Allerson, M., Corzo, C., Diaz, A., Gramer, M. (2012). Transmission of influenza A virus in pigs. Transbound Emerg Dis. 59(Suppl 1): 68-84. https://doi.org/10.1111/j.1865-1682.2011.01300.x PMid:22226050


Copyright

© 2025 Angjelovski B. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 48, Issue 2, Pages i-ix, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: https://doi.org/10.2478/macvetrev-2025-0025