Original Scientific Article
Therapeutic potential of Asparagus racemosus and Vitex negundo against polycystic ovarian syndrome in wistar rats: exploring an oxidative stress independent mechanism
Angshita Ghosh
,
Tarun Kumar Kar
,
Sananda Sil
,
Ananya Barman
,
Sandip Chattopadhyay
*
Received: 09 July 2024
Received in revised form: 18 January 2025
Accepted: 25 April 2025
Available Online First: 04 August 2025
Published on: 15 October 2025
Correspondence: Sandip Chattopadhyay, sandipdoc@yahoo.com
Abstract
Polycystic ovarian syndrome (PCOS) is the most predominant endocrine disorder responsible for female infertility. The clinical treatment strategies of PCOS only provide symptomatic relief but are often unsatisfactory. Asparagus racemosus and Vitex negundo have long been used as traditional herbal intervention in treating various metabolic and reproductive issues. Therefore, a pressing need for a better alternative approach is essential. The study aimed to assess the effect of A. racemosus (ARA) and V. negundo (VNA) aqueous extract on treating PCOS-like symptoms in female rats. Letrozole (1.0 mg/kg BW) was used to induce PCOS in rats which were then treated with ARA and VNA in a dose of 250 mg/kg BW orally for 21 consecutive days. These herbs improved the estrous cycle after being perturbed by letrozole. ARA and VNA significantly increased the level of estradiol and estradiol receptor (ESR1) in PCOS rats, which further prevented uterine shrinkage. Post treatment of these herbs also revealed a notable decline in serum glucose and triglyceride levels in letrozole-induced PCOS rats. Letrozole caused reproductive and metabolic alterations without inducing oxidative stress, evidenced by higher activity of SOD and catalase in PCOS group. However, both supplemented groups showed baseline level of SOD and catalase similar to the vehicle-treated control. Moreover, ARA and VNA administration decreased the appearance of cystic follicles in histomorphological study by regulating ovarian folliculogenesis. Hence, this is the first time we reported that restoration of normal reproductive and metabolic function in letrozole induced PCOS by ARA and VNA were independent of oxidative stress.
Keywords: PCOS, Wistar rats, Asparagus racemosus, Vitex negundo, oxidative stress
References
-
Escobar-Morreale, H.F. (2018). Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 14(5): 270-284.
https://doi.org/10.1038/nrendo.2018.24 PMid:29569621
-
Witchel, S.F., Oberfield, S.E., Peña, A.S. (2019). Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls [presentation]. J Endocr Soc. 3(8): 1545-1573.
https://doi.org/10.1210/js.2019-00078 PMid:31384717 PMCid:PMC6676075
-
Sanchez-Garrido, M.A., Tena-Sempere, M. (2020). Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab. 35, 100937.
https://doi.org/10.1016/j.molmet.2020.01.001 PMid:32244180 PMCid:PMC7115104
-
-
Dadachanji, R., Shaikh, N., Mukherjee, S. (2018). Genetic variants associated with hyperandrogenemia in PCOS pathophysiology. Genet Res Int. 2018, 7624932.
https://doi.org/10.1155/2018/7624932 PMid:29670770 PMCid:PMC5835258
-
Xu, X.L., Deng, S.L., Lian, Z.X., Yu, K. (2021). Estrogen receptors in polycystic ovary syndrome. Cells. 10(2): 459.
https://doi.org/10.3390/cells10020459 PMid:33669960 PMCid:PMC7924872
-
González, F., Nair, K.S., Daniels, J.K., Basal, E., Schimke, J.M., Blair, H.E. (2012). Hyperandrogenism sensitizes leukocytes to hyperglycemia to promote oxidative stress in lean reproductive-age women. J Clin Endocrinol Metab. 97(8): 2836-2843.
https://doi.org/10.1210/jc.2012-1259 PMid:22569241 PMCid:PMC3410256
-
Rudnicka, E., Duszewska, A.M., Kucharski, M., Tyczyński, P., Smolarczyk, R. (2022). Oxidative stress and reproductive function: oxidative stress in polycystic ovary syndrome. Reproduction. 164(6): F145-F154.
https://doi.org/10.1530/REP-22-0152 PMid:36279177
-
Jensterle, M., Kravos, N.A., Ferjan, S., Goricar, K., Dolzan, V., Janez, A. (2020). Long-term efficacy of metformin in overweight-obese PCOS: longitudinal follow-up of retrospective cohort. Endocr Connect. 9(1): 44-54.
https://doi.org/10.1530/EC-19-0449 PMid:31829964 PMCid:PMC6993269
-
Alesi, S., Forslund, M., Melin, J., Romualdi, D., Peña, A., Tay, C.T., Witchel, S.F., et al. (2023). Efficacy and safety of anti-androgens in the management of polycystic ovary syndrome: a systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine. 63, 102162.
https://doi.org/10.1016/j.eclinm.2023.102162 PMid:37583655 PMCid:PMC10424142
-
Forslund, M., Melin, J., Alesi, S., Piltonen, T., Romualdi, D., Tay, C.T., Witchel, S., et al. (2023). Different kinds of oral contraceptive pills in polycystic ovary syndrome: a systematic review and meta-analysis. Eur J Endocrinol. 189(1): S1-S16.
https://doi.org/10.1093/ejendo/lvad082 PMid:37440702
-
Lanzo, E., Monge, M., Trent, M. (2015). Diagnosis and management of polycystic ovary syndrome in adolescent girls. Pediatr Ann. 44(9): e223-230.
https://doi.org/10.3928/00904481-20150910-10 PMid:26431241 PMCid:PMC5659205
-
-
Lakshmi, J.N., Babu, A.N., Kiran, S.S.M., Nori, L.P., Hassan, N., Ashames, A. Bhandare, R.R., Shaik, A.B. (2023). Herbs as a source for the treatment of polycystic ovarian syndrome: A systematic review. BioTech (Basel). 12(1): 4.
https://doi.org/10.3390/biotech12010004 PMid:36648830 PMCid:PMC9844343
-
Alok, S., Jain, S.K., Verma, A., Kumar, M., Mahor, A., Sabharwal, M. (2013). Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): a review. Asian Pac J Trop Dis. 3(3): 242-251.
https://doi.org/10.1016/S2222-1808(13)60049-3
-
Tandon, V.R. (2005). Medicinal uses and biological activities of Vitex negundo. Nat Prod Rad. 4(3): 162-165.
-
Pandey, A.K., Gupta, A., Tiwari, M., Prasad, S., Pandey, A.N., Yadav, P.K., et al. (2018). Impact of stress on female reproductive health disorders: possible beneficial effects of shatavari (Asparagus racemosus). Biomed Pharmacother. 103, 46-49.
https://doi.org/10.1016/j.biopha.2018.04.003 PMid:29635127
-
Bano, U., Jabeen, A., Ahmed, A., Siddiqui, M.A. (2015). Therapeutic uses of Vitex nigundo. World J Pharm Med. 4(12): 589-606.
-
Jajra, S.D., Panwar, N., Adlakha, M.K., Purvia, R.P., Gautam, V., Singh, C. (2019). Role of (Vitex negundo) nirgundi in pain management. World J Pharm Med. 8(7): 2083-2089.
-
Siriwardene, S.D., Karunathilaka, L.A., Kodituwakku, N.D., Karunarathne, Y.A. (2010). Clinical efficacy of Ayurveda treatment regimen on Subfertility with poly cystic ovarian syndrome (PCOS). AYU 31(1): 24-27.
https://doi.org/10.4103/0974-8520.68203 PMid:22131680 PMCid:PMC3215317
-
Kakadia, N., Patel, P., Deshpande, S., Shah, G. (2018). Effect of Vitex negundo L. seeds in letrozole induced polycystic ovarian syndrome. J Tradit Complement Med. 9(4): 336-345.
https://doi.org/10.1016/j.jtcme.2018.03.001 PMid:31453130 PMCid:PMC6701941
-
-
-
Kafali, H., Iriadam, M., Ozardalı, I., Demir, N. (2004). Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res. 35(2): 103-108.
https://doi.org/10.1016/j.arcmed.2003.10.005 PMid:15010188
-
Balasubramanian, A., Pachiappan, S., Mohan, S., Adhikesavan, H., Karuppasamy, I., Ramalingam, K. (2023). Therapeutic exploration of polyherbal formulation against letrozole induced PCOS rats: a mechanistic approach. Heliyon. 9(5): e15488.
https://doi.org/10.1016/j.heliyon.2023.e15488 PMid:37180914 PMCid:PMC10173408
-
Weydert, C.J., Cullen, J.J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 5(1): 51-66.
https://doi.org/10.1038/nprot.2009.197 PMid:20057381 PMCid:PMC2830880
-
Rosenfield, R.L., Ehrmann, D.A. (2016). The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 37(5): 467-520.
https://doi.org/10.1210/er.2015-1104 PMid:27459230 PMCid:PMC5045492
-
Gervásio, C.G., Bernuci, M.P., Silva-de-Sá, M.F., Rosa-e-Silva, A.C. (2014). The role of androgen hormones in early follicular development. ISRN Obstet Gynecol. 2014, 818010.
https://doi.org/10.1155/2014/818010 PMid:25006485 PMCid:PMC4003798
-
Chauvin, S., Cohen-Tannoudji, J., Guigon, C.J. (2022). Estradiol signaling at the heart of folliculogenesis: its potential deregulation in human ovarian pathologies. Int J Mol Sci. 23(1): 512.
https://doi.org/10.3390/ijms23010512 PMid:35008938 PMCid:PMC8745567
-
Bries, A.E., Webb, J.L., Vogel, B., Carrillo, C., Keating, A.F., Pritchard, S.K., Roslan, G., et al. (2021). Letrozole-induced polycystic ovary syndrome attenuates cystathionine-β synthase mRNA and protein abundance in the ovaries of female Sprague Dawley rats. J Nutr. 151(6): 1407-1415.
https://doi.org/10.1093/jn/nxab038 PMid:33758914 PMCid:PMC8169814
-
Mandalà, M. (2020). Influence of estrogens on uterine vascular adaptation in normal and preeclamptic pregnancies. Int J Mol Sci. 21(7): 2592.
https://doi.org/10.3390/ijms21072592 PMid:32276444 PMCid:PMC7177259
-
Kuiper, G.G., Lemmen, J.G., Carlsson, B.O., Corton, J.C., Safe, S.H., Van Der Saag, P.T., van der Burg, B., Gustafsson, J.A. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology. 139(10): 4252-4263.
https://doi.org/10.1210/endo.139.10.6216 PMid:9751507
-
Sabnis, P.B., Gaitonde, B.B., Jetmalani M. (1968). Effects of alcoholic extracts of Asparagus racemosus on mammary glands of rats. Indian J Exp Biol. 6(1): 55-57.
-
Payne, A.H., Hales, D.B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 25(6): 947-970.
https://doi.org/10.1210/er.2003-0030 PMid:15583024
-
Sun, Y., Zhang, J., Ping, Z., Fan, L., Wang, C., Li, W., Lu, C., Zheng, L., Zhou, X. (2011). Expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) in normal and cystic follicles in sows. Afr J Biotechnol. 10(32): 6184-6189.
-
Hu, J., Zhang, Z., Shen, W.J., Azhar, S. (2010). Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond). 7, 47.
https://doi.org/10.1186/1743-7075-7-47 PMid:20515451 PMCid:PMC2890697
-
Bednarska, S., Siejka, A. (2017). The pathogenesis and treatment of polycystic ovary syndrome: what’s new? Adv Clin Exp Med. 26(2): 359-367.
https://doi.org/10.17219/acem/59380 PMid:28791858
-
Dumesic, D.A., Akopians, A.L., Madrigal, V.K., Ramirez, E., Margolis, D.J., Sarma, M.K., Thomas, A.M., et al. (2016). Hyperandrogenism accompanies increased intra-abdominal fat storage in normal weight polycystic ovary syndrome women. J Clin Endocrinol Metab. 101(11): 4178-4188.
https://doi.org/10.1210/jc.2016-2586 PMid:27571186 PMCid:PMC5095243
-
Zhang, Y., Liu, L., Yin, T.L., Yang, J., Xiong, C.L. (2017). Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget. 8(46): 80472-80480.
https://doi.org/10.18632/oncotarget.19058 PMid:29113318 PMCid:PMC5655213
-
Zuo, T., Zhu, M., Xu, W. (2016). Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev. 2016, 8589318.
https://doi.org/10.1155/2016/8589318 PMid:26770659 PMCid:PMC4684888
-
Younas, A., Hussain, L., Shabbir, A., Asif, M., Hussain, M., Manzoor, F. (2022). Effects of Fagonia indica on letrozole-induced polycystic ovarian syndrome (PCOS) in young adult female rats. Evid Based Complement Alternat Med. 2022, 1397060.
https://doi.org/10.1155/2022/1397060 PMid:35664938 PMCid:PMC9162856
Copyright
© 2025 Ghosh A. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of Interest Statement
The authors have declared that no competing interests exist.
Citation Information
Macedonian Veterinary Review. Volume 48, Issue 2, Pages i-xii, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: https://doi.org/10.2478/macvetrev-2025-0026