Original Scientific Article
Therapeutic potential of Asparagus racemosus and Vitex negundo against polycystic ovarian syndrome in wistar rats: exploring an oxidative stress independent mechanism
Angshita Ghosh ,
Tarun Kumar Kar ,
Sananda Sil ,
Ananya Barman ,
Sandip Chattopadhyay *

Mac Vet Rev 2025; 48 (2): i - xii

10.2478/macvetrev-2025-0026

Received: 09 July 2024

Received in revised form: 18 January 2025

Accepted: 25 April 2025

Available Online First: 04 August 2025

Published on: 15 October 2025

Correspondence: Sandip Chattopadhyay, sandipdoc@yahoo.com
PDF HTML

Abstract

Polycystic ovarian syndrome (PCOS) is the most predominant endocrine disorder responsible for female infertility. The clinical treatment strategies of PCOS only provide symptomatic relief but are often unsatisfactory. Asparagus racemosus and Vitex negundo have long been used as traditional herbal intervention in treating various metabolic and reproductive issues. Therefore, a pressing need for a better alternative approach is essential. The study aimed to assess the effect of A. racemosus (ARA) and V. negundo (VNA) aqueous extract on treating PCOS-like symptoms in female rats. Letrozole (1.0 mg/kg BW) was used to induce PCOS in rats which were then treated with ARA and VNA in a dose of 250 mg/kg BW orally for 21 consecutive days. These herbs improved the estrous cycle after being perturbed by letrozole. ARA and VNA significantly increased the level of estradiol and estradiol receptor (ESR1) in PCOS rats, which further prevented uterine shrinkage. Post treatment of these herbs also revealed a notable decline in serum glucose and triglyceride levels in letrozole-induced PCOS rats. Letrozole caused reproductive and metabolic alterations without inducing oxidative stress, evidenced by higher activity of SOD and catalase in PCOS group. However, both supplemented groups showed baseline level of SOD and catalase similar to the vehicle-treated control. Moreover, ARA and VNA administration decreased the appearance of cystic follicles in histomorphological study by regulating ovarian folliculogenesis. Hence, this is the first time we reported that restoration of normal reproductive and metabolic function in letrozole induced PCOS by ARA and VNA were independent of oxidative stress.

Keywords: PCOS, Wistar rats, Asparagus racemosus, Vitex negundo, oxidative stress


References

  1. Escobar-Morreale, H.F. (2018). Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 14(5): 270-284. https://doi.org/10.1038/nrendo.2018.24 PMid:29569621
  2. Witchel, S.F., Oberfield, S.E., Peña, A.S. (2019). Polycystic ovary syndrome: pathophysiology, presentation, and treatment with emphasis on adolescent girls [presentation]. J Endocr Soc. 3(8): 1545-1573. https://doi.org/10.1210/js.2019-00078 PMid:31384717 PMCid:PMC6676075
  3. Sanchez-Garrido, M.A., Tena-Sempere, M. (2020). Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab. 35, 100937. https://doi.org/10.1016/j.molmet.2020.01.001 PMid:32244180 PMCid:PMC7115104
  4. Palomba, S., Daolio, J., La Sala, G.B. (2017). Oocyte competence in women with polycystic ovary syndrome. Trends Endocrinol Metab. 28(3): 186-198. https://doi.org/10.1016/j.tem.2016.11.008 PMid:27988256
  5. Dadachanji, R., Shaikh, N., Mukherjee, S. (2018). Genetic variants associated with hyperandrogenemia in PCOS pathophysiology. Genet Res Int. 2018, 7624932.  https://doi.org/10.1155/2018/7624932 PMid:29670770 PMCid:PMC5835258
  6. Xu, X.L., Deng, S.L., Lian, Z.X., Yu, K. (2021). Estrogen receptors in polycystic ovary syndrome. Cells. 10(2): 459. https://doi.org/10.3390/cells10020459 PMid:33669960 PMCid:PMC7924872
  7. González, F., Nair, K.S., Daniels, J.K., Basal, E., Schimke, J.M., Blair, H.E. (2012). Hyperandrogenism sensitizes leukocytes to hyperglycemia to promote oxidative stress in lean reproductive-age women. J Clin Endocrinol Metab. 97(8): 2836-2843. https://doi.org/10.1210/jc.2012-1259 PMid:22569241 PMCid:PMC3410256
  8. Rudnicka, E., Duszewska, A.M., Kucharski, M., Tyczyński, P., Smolarczyk, R. (2022). Oxidative stress and reproductive function: oxidative stress in polycystic ovary syndrome. Reproduction. 164(6): F145-F154. https://doi.org/10.1530/REP-22-0152 PMid:36279177
  9. Jensterle, M., Kravos, N.A., Ferjan, S., Goricar, K., Dolzan, V., Janez, A. (2020). Long-term efficacy of metformin in overweight-obese PCOS: longitudinal follow-up of retrospective cohort. Endocr Connect. 9(1): 44-54. https://doi.org/10.1530/EC-19-0449 PMid:31829964 PMCid:PMC6993269
  10. Alesi, S., Forslund, M., Melin, J., Romualdi, D., Peña, A., Tay, C.T., Witchel, S.F., et al. (2023). Efficacy and safety of anti-androgens in the management of polycystic ovary syndrome: a systematic review and meta-analysis of randomised controlled trials. EClinicalMedicine. 63, 102162. https://doi.org/10.1016/j.eclinm.2023.102162 PMid:37583655 PMCid:PMC10424142
  11. Forslund, M., Melin, J., Alesi, S., Piltonen, T., Romualdi, D., Tay, C.T., Witchel, S., et al. (2023). Different kinds of oral contraceptive pills in polycystic ovary syndrome: a systematic review and meta-analysis. Eur J Endocrinol. 189(1): S1-S16. https://doi.org/10.1093/ejendo/lvad082 PMid:37440702
  12. Lanzo, E., Monge, M., Trent, M. (2015). Diagnosis and management of polycystic ovary syndrome in adolescent girls. Pediatr Ann. 44(9): e223-230. https://doi.org/10.3928/00904481-20150910-10 PMid:26431241 PMCid:PMC5659205
  13. Rathee, P., Rathee, S. (2022). A review of polycystic ovarian syndrome in Ayurveda. IRJAY 05(2): 114-117. https://doi.org/10.47223/IRJAY.2022.5220
  14. Lakshmi, J.N., Babu, A.N., Kiran, S.S.M., Nori, L.P., Hassan, N., Ashames, A. Bhandare, R.R., Shaik, A.B. (2023). Herbs as a source for the treatment of polycystic ovarian syndrome: A systematic review. BioTech (Basel). 12(1): 4.  https://doi.org/10.3390/biotech12010004 PMid:36648830 PMCid:PMC9844343
  15. Alok, S., Jain, S.K., Verma, A., Kumar, M., Mahor, A., Sabharwal, M. (2013). Plant profile, phytochemistry and pharmacology of Asparagus racemosus (Shatavari): a review. Asian Pac J Trop Dis. 3(3): 242-251. https://doi.org/10.1016/S2222-1808(13)60049-3
  16. Tandon, V.R. (2005). Medicinal uses and biological activities of Vitex negundo. Nat Prod Rad. 4(3): 162-165.
  17. Pandey, A.K., Gupta, A., Tiwari, M., Prasad, S., Pandey, A.N., Yadav, P.K., et al. (2018). Impact of stress on female reproductive health disorders: possible beneficial effects of shatavari (Asparagus racemosus). Biomed Pharmacother. 103, 46-49. https://doi.org/10.1016/j.biopha.2018.04.003 PMid:29635127
  18. Bano, U., Jabeen, A., Ahmed, A., Siddiqui, M.A. (2015). Therapeutic uses of Vitex nigundo. World J Pharm Med. 4(12): 589-606.
  19. Jajra, S.D., Panwar, N., Adlakha, M.K., Purvia, R.P., Gautam, V., Singh, C. (2019). Role of (Vitex negundo) nirgundi in pain management. World J Pharm Med. 8(7): 2083-2089.
  20. Siriwardene, S.D., Karunathilaka, L.A., Kodituwakku, N.D., Karunarathne, Y.A. (2010). Clinical efficacy of Ayurveda treatment regimen on Subfertility with poly cystic ovarian syndrome (PCOS). AYU 31(1): 24-27. https://doi.org/10.4103/0974-8520.68203 PMid:22131680 PMCid:PMC3215317
  21. Kakadia, N., Patel, P., Deshpande, S., Shah, G. (2018). Effect of Vitex negundo L. seeds in letrozole induced polycystic ovarian syndrome. J Tradit Complement Med. 9(4): 336-345. https://doi.org/10.1016/j.jtcme.2018.03.001 PMid:31453130 PMCid:PMC6701941
  22. Singh, R. (2016). Asparagus racemosus: a review on its phytochemical and therapeutic potential. Nat Prod Res. 30(17): 1896-1908. https://doi.org/10.1080/14786419.2015.1092148 PMid:26463825
  23. Soren, A.D., Yadav, A.K. (2021). Studies on the anthelmintic potentials of the roots of Asparagus racemosus willed. Clin Phytosci. 7, 32. https://doi.org/10.1186/s40816-021-00270-8
  24. Kafali, H., Iriadam, M., Ozardalı, I., Demir, N. (2004). Letrozole-induced polycystic ovaries in the rat: a new model for cystic ovarian disease. Arch Med Res. 35(2): 103-108. https://doi.org/10.1016/j.arcmed.2003.10.005 PMid:15010188
  25. Balasubramanian, A., Pachiappan, S., Mohan, S., Adhikesavan, H., Karuppasamy, I., Ramalingam, K. (2023). Therapeutic exploration of polyherbal formulation against letrozole induced PCOS rats: a mechanistic approach. Heliyon. 9(5): e15488.  https://doi.org/10.1016/j.heliyon.2023.e15488 PMid:37180914 PMCid:PMC10173408
  26. Weydert, C.J., Cullen, J.J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc. 5(1): 51-66. https://doi.org/10.1038/nprot.2009.197 PMid:20057381 PMCid:PMC2830880
  27. Rosenfield, R.L., Ehrmann, D.A. (2016). The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 37(5): 467-520. https://doi.org/10.1210/er.2015-1104 PMid:27459230 PMCid:PMC5045492
  28. Gervásio, C.G., Bernuci, M.P., Silva-de-Sá, M.F., Rosa-e-Silva, A.C. (2014). The role of androgen hormones in early follicular development. ISRN Obstet Gynecol. 2014, 818010. https://doi.org/10.1155/2014/818010 PMid:25006485 PMCid:PMC4003798
  29. Chauvin, S., Cohen-Tannoudji, J., Guigon, C.J. (2022). Estradiol signaling at the heart of folliculogenesis: its potential deregulation in human ovarian pathologies. Int J Mol Sci. 23(1): 512. https://doi.org/10.3390/ijms23010512 PMid:35008938 PMCid:PMC8745567
  30. Bries, A.E., Webb, J.L., Vogel, B., Carrillo, C., Keating, A.F., Pritchard, S.K., Roslan, G., et al. (2021). Letrozole-induced polycystic ovary syndrome attenuates cystathionine-β synthase mRNA and protein abundance in the ovaries of female Sprague Dawley rats. J Nutr. 151(6): 1407-1415. https://doi.org/10.1093/jn/nxab038 PMid:33758914 PMCid:PMC8169814
  31. Mandalà, M. (2020). Influence of estrogens on uterine vascular adaptation in normal and preeclamptic pregnancies. Int J Mol Sci. 21(7): 2592. https://doi.org/10.3390/ijms21072592 PMid:32276444 PMCid:PMC7177259
  32. Kuiper, G.G., Lemmen, J.G., Carlsson, B.O., Corton, J.C., Safe, S.H., Van Der Saag, P.T., van der Burg, B., Gustafsson, J.A. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology. 139(10): 4252-4263.  https://doi.org/10.1210/endo.139.10.6216 PMid:9751507
  33. Sabnis, P.B., Gaitonde, B.B., Jetmalani M. (1968). Effects of alcoholic extracts of Asparagus racemosus on mammary glands of rats. Indian J Exp Biol. 6(1): 55-57.
  34. Payne, A.H., Hales, D.B. (2004). Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 25(6): 947-970. https://doi.org/10.1210/er.2003-0030 PMid:15583024
  35. Sun, Y., Zhang, J., Ping, Z., Fan, L., Wang, C., Li, W., Lu, C., Zheng, L., Zhou, X. (2011). Expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) in normal and cystic follicles in sows. Afr J Biotechnol. 10(32): 6184-6189.
  36. Hu, J., Zhang, Z., Shen, W.J., Azhar, S. (2010). Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr Metab (Lond). 7, 47. https://doi.org/10.1186/1743-7075-7-47 PMid:20515451 PMCid:PMC2890697
  37. Bednarska, S., Siejka, A. (2017). The pathogenesis and treatment of polycystic ovary syndrome: what’s new? Adv Clin Exp Med. 26(2): 359-367. https://doi.org/10.17219/acem/59380 PMid:28791858
  38. Dumesic, D.A., Akopians, A.L., Madrigal, V.K., Ramirez, E., Margolis, D.J., Sarma, M.K., Thomas, A.M., et al. (2016). Hyperandrogenism accompanies increased intra-abdominal fat storage in normal weight polycystic ovary syndrome women. J Clin Endocrinol Metab. 101(11): 4178-4188. https://doi.org/10.1210/jc.2016-2586 PMid:27571186 PMCid:PMC5095243
  39. Zhang, Y., Liu, L., Yin, T.L., Yang, J., Xiong, C.L. (2017). Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget. 8(46): 80472-80480. https://doi.org/10.18632/oncotarget.19058 PMid:29113318 PMCid:PMC5655213
  40. Zuo, T., Zhu, M., Xu, W. (2016). Roles of oxidative stress in polycystic ovary syndrome and cancers. Oxid Med Cell Longev. 2016, 8589318. https://doi.org/10.1155/2016/8589318 PMid:26770659 PMCid:PMC4684888
  41. Younas, A., Hussain, L., Shabbir, A., Asif, M., Hussain, M., Manzoor, F. (2022). Effects of Fagonia indica on letrozole-induced polycystic ovarian syndrome (PCOS) in young adult female rats. Evid Based Complement Alternat Med. 2022, 1397060.  https://doi.org/10.1155/2022/1397060 PMid:35664938 PMCid:PMC9162856


Copyright

© 2025 Ghosh A. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 48, Issue 2, Pages i-xii, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: https://doi.org/10.2478/macvetrev-2025-0026