Original Scientific Article
Еvaluation of ameliorative efficacy of carboplatin with pioglitazone through adiponectin augmentation by activating PPAR-γ in high-fat diet-induced ovarian cancer in mice
Sudhakar Pachiappan * ,
Selva Preethi Samundi ,
Sumitha Pachiappan ,
Panneerselvam Theivendren ,
Parasuraman Pavadai ,
Sabarinath Chandrasekar ,
Gomathi Vengatachalam

Mac Vet Rev 2026; 49 (1): i - xv

10.2478/macvetrev-2025-0031

Received: 30 November 2024

Received in revised form: 08 August 2025

Accepted: 12 August 2025

Available Online First: 18 November 2025

Published on: 15 March 2026

Correspondence: Sudhakar Pachiappan, sudhakar00pharma@gmail.com
PDF HTML

Abstract


Carboplatin is one of the preferred treatments for ovarian cancer. To improve the therapeutic effectiveness of carboplatin in ovarian cancer, the novel combination therapy of carboplatin with the peroxisome proliferator-activated receptor-gamma agonist pioglitazone was studied in a high-fat diet-induced ovarian cancer model. Thirty Swiss Albino mice (20-35 g) were randomly divided into five groups. Group I received a regular diet, while groups II-V were fed a high-fat diet, with group II serving as the disease control. Groups III-V received carboplatin (133 mg/kg), carboplatin (133 mg/kg) plus pioglitazone (3 mg/kg), and carboplatin (133 mg/kg) plus pioglitazone (9 mg/kg), respectively, for 14 weeks. On day 56 of the study, cancer induction was confirmed by measuring serum lipid profile, pro-inflammatory cytokines, and adiponectin levels. Following this, drug treatment was administered for 6 weeks. On day 98, treatment efficacy was evaluated through serum lipid profiles and pro-inflammatory cytokine levels, and confirmed by ovarian histological studies. The combination therapy of carboplatin and pioglitazone significantly altered serum lipid profiles (TC, TG, LDL, and HDL) and pro-inflammatory cytokine (IL-6, TNF-α, and MCP-1) levels. Additionally, it increased adiponectin levels by activating the PPAR-γ receptor, compared to the disease control. The combination of carboplatin with the PPAR-γ activating ligand pioglitazone enhances the efficacy of carboplatin in ovarian carcinoma by increasing plasma adiponectin levels, which effectively reduces cytokines and chemokines responsible for tumor progression in obesity-induced ovarian cancer.

Keywords: adiponectin, carboplatin, mice ovarian cancer, pioglitazone


References

  1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, A., Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68(6): 394-424. https://doi.org/10.3322/caac.21492 
  2. Sant, M., Lopez, M.D., Agresti, R., Pérez, M.J., Holleczek, , Bielska-Lasota M., Dimitrova, N., et al. (2015). Survival of women with cancers of breast and genital organs in Europe 1999-2007: results of the EUROCARE-5 study. Eur J Cancer. 51(15): 2191-2205. https://doi.org/10.1016/j.ejca.2015.07.022 
  3. Mehra, K., Mehrad, M., Ning, G., Drapkin, R., McKeon, F.D., Xian, W., Xian, W., Crum, C.P. (2011). STICS, SCOUTs and p53 signatures; a new language for pelvic serous carcinogenesis. Front Biosci (Elite Ed). 3(2): 625-634. https://doi.org/10.2741/e275 PMid:21196340
  4. Kim, J., Coffey, D.M., Ma, L., Matzuk, M.M. (2015). The ovary is an alternative site of origin for high- grade serous ovarian cancer in mice. Endocrinol. 156(6): 1975-1981. https://doi.org/10.1210/en.2014-1977 PMid:25815421 PMCid:PMC5393339
  5. Jayson, G.C., Kohn, E.C., Kitchener, H.C., Ledermann, J.A. (2014). Ovarian cancer. Lancet. 384(9951): 1376-1388. https://doi.org/10.1016/S0140-6736(13)62146-7 PMid:24767708
  6. Chesang, J.J. (2017). Pathogenesis of ovarian cancer: Current perspectives. East Afr Med J. 94(7): 561-574.
  7. Stewart, C., Ralyea, C., Lockwood, S. (2019). Ovarian Cancer: An Integrated Review. Semin Oncol Nurs. 35(2): 151-156. https://doi.org/10.1016/j.soncn.2019.02.001 PMid:30867104
  8. Calle, E., Rodriguez, C., Walker-Thurmond, K., Thun, M.J. (2003). Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med. 348(17): 1625-1638. https://doi.org/10.1056/NEJMoa021423 PMid:12711737
  9. Jemal, A., Siegel, R., Xu, J., Ward, E. (2010). Cancer statistics, 2010. CA Cancer J Clin. 60(5): 277-300. https://doi.org/10.3322/caac.20073 PMid:20610543
  10. Ose, J., Fortner, R.T., Rinaldi, S., Schock, H., Overvad, K., Tjonneland, A., et al. (2015). Endogenous androgens and risk of epithelial invasive ovarian cancer by tumor characteristics in the European prospective investigation into cancer and nutrition. Int J Cancer. 136(2): 399-410. https://doi.org/10.1002/ijc.2900 PMid:24890047
  11. Uddin, S., Bu, R., Ahmed, M., Abubaker, J., Al-Dayel, F., Bavi, P., Al-Kuraya, K.S. (2009). Over expression of leptin receptor predicts an unfavorable outcome in Middle Eastern ovarian cancer. Mol Cancer. 8, 74. https://doi.org/10.1186/1476-4598-8-74 PMid:19765303 PMCid:PMC2754986
  12. Chen, C., Chang, Y.C., Lan, M.S., Breslin, M. (2016). Leptin stimulates ovarian cancer cell growth and inhibits apoptosis by increasing cyclin D1 and Mcl-1 expression via the activation of the MEK/ ERK1/2 and PI3K/Akt signaling pathways. Int J Oncol. 49(2): 847.
  13. Jin, H., Kim, H.J., Kim, C.Y., Kim, Y.H., Ju, W., Kim, S.C. (2016). Association of plasma adiponectin and leptin levels with the development and progression of ovarian cancer. Obstet Gynecol Sci. 59(4): 279-285. https://doi.org/10.5468/ogs.2016.59.4.279 PMid:27462594 PMCid:PMC4958673
  14. Hoffmann, M., Gogola, J., Ptak, A. (2018). Adiponectin reverses the proliferative effects of estradiol and IGF-1 in human pithelial ovarian cancer cells by down regulating the expression of their receptors. Horm Cancer. 9(3): 166-174. https://doi.org/10.1007/s12672-018-0331-z PMid:29603059
  15. Otokozawa, S., Tanaka, R., Akasaka, H., Ito, E., Asakura, S., Ohnishi, H., Saito, S., et al. (2015). Associations of serum isoflavone, adiponectin and insulin levels with risk for epithelial ovarian cancer: results of a case-control study. Asian Pac J Cancer Prev. 16(12): 4987-4991. https://doi.org/10.7314/APJCP.2015.16.12.4987 PMid:26163627
  16. Dupont, J., Reverchon, M., Cloix, L., Froment, P., Ramé, C. (2012). Involvement of adipokines, AMPK, PI3K and the PPAR signalling pathways in ovarian follicle development and cancer. Int J Dev Biol. 56(10-12): 959-967. https://doi.org/10.1387/ijdb.120134jd  PMid:23417417
  17. Zhou, H., Zhao, H., Liu, H., Xu, X., Dong, X., Zhao, E. (2018). Influence of carboplatin on the proliferation and apoptosis of ovarian cancer cells through mTOR/p70s6k signaling J BUON. 23(6): 1732-1738.
  18. Sousa, F., Wlodarczyk, S.R., Monteiro, G. (2014). Carboplatin: molecular mechanisms of action associated with chemoresistance. Braz J Pharm Sci. 50(4): 693-701.https://doi.org/10.1590/S1984-82502014000400004
  19. Shigeto, T., Yokoyama, Y., Xin, B., Mizunuma, H. (2007). Peroxisome proliferator-activated receptor alpha and gamma ligands inhibit the growth of human ovarian cancer. Oncol Rep. 18(4): 833-840. https://doi.org/10.3892/or.18.4.833
  20. Berek, S., Renz, M., Kehoe, S., Kumar, L., Friedlander, M. (2021). Cancer of the ovary, fallopian tube, and peritoneum: 2021 update. Int J Gynaecol Obstet. 155(Suppl. 1): 61-85. https://doi.org/10.1002/ijgo.13878 PMid:34669199 PMCid:PMC9298325
  21. Christensen, M.L., Meibohm, B., Capparelli, E.V., Velasquez-Mieyer, P., Burghen, G.A., Tamborlane, W.V. (2005). Single- and multiple-dose pharmacokinetics of pioglitazone in adolescents with type 2 diabetes. J Clin Pharmacol. 45(10): 1137-1144. https://doi.org/10.1177/0091270005279578 PMid:16172178
  22. Nair, B., Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 7(2): 27-31. https://doi.org/10.4103/0976-0105.177703 PMid:27057123 PMCid:PMC4804402
  23. Abdul Kadir, A., Rahmat, A., Jaafar, H.Z. (2015). Protective effects of tamarillo (Cyphomandra betacea) extract against high fat diet induced obesity in Sprague-Dawley rats. J Obes. 2015, 846041. https://doi.org/10.1155/2015/846041 PMid:26171246 PMCid:PMC4480815
  24. Pachiappan, S., Ramalingam, K., Balasubramanian, A. (2021). Combined effects of Gymnema sylvestre and Pergularia daemia on letrozole-induced polycystic ovarian syndrome in rats. Asian Pac J Reprod. 10(2): 68-74. https://doi.org/10.4103/2305-0500.311610
  25. Walter, F., Addis, T. (1939). Organ work and organ weight. J Exp Med. 69(3): 467-483. https://doi.org/10.1084/jem.69.3.467 PMid:19870857 PMCid:PMC2133748
  26. Zhang, L., Yang, N., Garcia, J.R., Mohamed, A., Benencia, F., Rubin, S.C., Allman, D., Coukos, G. (2002). Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian Am J Pathol. 161(6): 2295-2309. https://doi.org/10.1016/S0002-9440(10)64505-1 PMid:12466143
  27. Mason, B., Cargill, S.L., Anderson, G.B., Carey, J.R. (2010). Ovarian status influenced the rate of body-weight change but not the total amount of body-weight gained or lost in female CBA/J mice. Exp Gerontol. 45(6): 435-441. https://doi.org/10.1016/j.exger.2010.03.010 PMid:20304041 PMCid:PMC2862801
  28. Landrier, F., Kasiri, E., Karkeni, E., Mihály, J., Béke, G., Weiss, K., Lucas, R., et al. (2017). Reduced adiponectin expression after high-fat diet is associated with selective up-regulation of ALDH1A1 and further retinoic acid receptor signaling in adipose tissue. FASEB J. 31(1): 203-211. https://doi.org/10.1096/fj.201600263rr PMid:27729412 PMCid:PMC5161515
  29. Unruh, D., Srinivasan, R., Benson, T., Haigh, S., Coyle, D., Batra, N., Keil R., et al. (2015). Red blood cell dysfunction induced by high-fat diet: potential implications for obesity-related atherosclerosis. Circulation 132(20): 1898-1908. https://doi.org/10.1161/CIRCULATIONAHA.115.017313 PMid:26467254 PMCid:PMC4772773
  30. Maysami, S., Haley, M.J., Gorenkova, N., Krishnan, S., McColl, B.W., Lawrence, C.B. (2015). Prolonged diet-induced obesity in mice modifies the inflammatory response and leads to worse outcome after stroke. J Neuroinflammation. 12, 140. https://doi.org/10.1186/s12974-015-0359-8 PMid:26239227 PMCid:PMC4524371
  31. Nnadiukwu, A.T., Monago-Ighorodje, C.C., Chuku, L.C. (2019). Hemoglobin and packed cell volume (PCV) of high-fat diet/ streptozotocine-induced diabetic Wistar rats treated with ethanol extract of an herbal mixture (Aju Mbaise). Int Blood Res Rev. 9(4): 1-6. https://doi.org/10.9734/ibrr/2019/v9i430105
  32. Ariztia, V., Lee, C.J., Gogoi, R., Fishman, D.A. (2006). The tumor microenvironment: key to early detection. Crit Rev Clin Lab Sci. 43(5-6): 393-425. https://doi.org/10.1080/10408360600778836 PMid:17050079
  33. Philip, M., Rowley, D.A., Schreiber, H. (2004). Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol. 14(6): 433-439. https://doi.org/10.1016/j.semcancer.2004.06.006 PMid:15489136
  34. Noguchi, M., Hiwatashi, N., Liu, Z., Toyota, T. (1998). Secretion imbalance between tumour necrosis factor and its inhibitor in inflammatory bowel disease. Gut. 43(2): 203-209. https://doi.org/10.1136/gut.43.2.203 PMid:10189845 PMCid:PMC1727225
  35. Rose-John, S., Schooltink, H. (2007). Cytokines are a therapeutic target for the prevention of inflammation-induced cancers. Recent Results Cancer Res. 174, 57-66. https://doi.org/10.1007/978-3-540-37696-5_5 PMid:17302185
  36. Kai, H., Kitadai, Y., Kodama, M., Cho, S., Kuroda, T., Ito, M., Tanaka, S., et al. (2005). Involvement of proinflammatory cytokines IL-1beta and IL-6 in progression of human gastric carcinoma. Anticancer Res. 25(2A): 709-713.
  37. Deji, N., Kume, S., Araki, S., Soumura, M., Sugimoto, T., Isshiki, K., Chin-Kanasaki, M., et al. (2009). Structural and functional changes in the kidneys of high-fat diet-induced obese mice. Am J Physiol Renal Physiol. 296(1): F118-126. https://doi.org/10.1152/ajprenal.00110.2008 PMid:18971213
  38. Lasker, S., Rahman, M.M., Parvez, F., Zamila, M., Miah, P., Nahar, K., Kabir, F., et al. (2019). High- fat diet-induced metabolic syndrome and oxidative stress in obese rats are ameliorated by yogurt supplementation. Sci Rep. 9(1): 20026. https://doi.org/10.1038/s41598-019-56538-0 PMid:31882854 PMCid:PMC6934669
  39. Hilal, G., Fatma, T., Ferruh, Y., Sabire, G., Yüksel, A. (2020). Effect of high-fat diet on the various morphological parameters of the ovary. Anat Cell Biol. 53(1): 58-67. https://doi.org/10.5115/acb.19.082 PMCid:PMC7118267
  40. Ukwubile, C.A. (2012). Phytochemical screening and anti-ovarian cancer properties of Annona muricata Linn (Annonaceae) seed ethanol extract. Int J Pharm Front Res. 1(3): 9-17.


Copyright

©2025 Pachiappan S. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 49, Issue 1, Pages i-xv, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI:  https://doi.org/10.2478/macvetrev-2025-0031