Original Scientific Article
Relationship between acoustic characteristics of dogs’ sounds and morphometric measurements of the laryngeal cartilages in dogs with various body sizes
Pavlina Ivanova Hristova
*
,
Iliana Stefanova Ruzhanova-Gospodinova
,
Mihail Stoyanov Chervenkov
Received: 10 December 2024
Received in revised form: 10 June 2025
Accepted: 07 August 2025
Available Online First: 19 December 2025
Published on: 15 March 2026
Correspondence: Pavlina Ivanova Hristova, pspiridonova@ltu.bg
Abstract
The present study aimed to explore the connection between the acoustic parameters of dog sounds and the morphometric characteristics of the laryngeal cartilages in dogs with various body sizes. We compared the measurements of the laryngeal cartilages (n=15) of equal number of small, medium, and large size dog cadavers with the acoustic parameters recorded from other dogs of similar size and number. The morphometry was performed with a digital caliper. Animal sounds were analysed with Raven Pro 1.6 software. Waveform and spectrogram graphs were displayed for each sound with 512-point Hann window 50% overlap time. Sound selections were manually verified. Our findings confirmed that small-sized dogs generate the highest pitched barks in every measured frequency (5%-95% and peak). In addition, their vocal signals are of the lowest tonality expressed in sound-to-noise ratio (SNR). The Frequency parameters (F) 5%, 25%, and 95% showed significant correlations with the morphometric values of the laryngeal cartilages, which indicates their role in the sound formation. These acoustic parameters had strong to moderate negative correlations with the thyroid cartilage (TC) width and height; arytenoid cartilage (AC) – distance between proc. corniculatus and proc. cuneiformis (corn-cun), depth of ventricle and distance between the two proc. cuneiformis (cun-cun); width, height and depth of cricoid cartilage (CC); width and height of the epiglottis (EP). Our finding suggested that F5%, F25% and F95% can be reliable parameters and can be used in the classification methods of dogs’ sounds as it varies predictably with laryngeal cartilages size.
Keywords: vocalizations, dog, laryngeal cartilages, morphometry, bioacoustics
References
- Riede, T., Fitch, T. (1999). Vocal tract length and acoustics of vocalization in the domestic dog (Canis familiaris). J Exp Biol. 202(Pt 20): 2859-2867. https://doi.org/10.1242/jeb.202.20.2859 PMid:10504322
- Kim, J., Hunter, E.J., Titze, I.R. (2004). Comparison of human, canine, and ovine laryngeal dimensions. Ann Otol Rhinol Laryngol. 113(1): 60-68. https://doi.org/10.1177/000348940411300114 PMid:14763576
- Feddersen-Petersen, D.U. (2000). Vocalization of European wolves (Canis lupus lupus ) and various dog breeds (Canis lupus f. fam.). Arch Anim Breed. 43(4): 387-398. https://doi.org/10.5194/aab-43-387-2000
- Pongracz, P., Miklosi, A., Molnar, Cs., Csanyi, V. (2005). Human listeners are able to classify dog barks recorded in different situations. J Comp Psychol. 119(2): 136-144. https://doi.org/10.1037/0735-7036.119.2.136 PMid:15982157
- Pongrácz, P., Molnár, C., Miklósi, Á. (2010). Barking in family dogs: an ethological approach. Vet J. 183(2): 141-147. https://doi.org/10.1016/j.tvjl.2008.12.010 PMid:19181546
- Pirrone, F., Pierantoni, L., Albizzati, V., Albertini, M. (2018). Different dynamics of sensory-motor development and behavior during the transitional period in puppies: preliminary results. Mac Vet Rev. 41(2): 153-161. https://doi.org/10.2478/macvetrev-2018-0018
- Yeon, C. (2007). The vocal communication of canines. J Vet Behav. 2(4): 141-144. https://doi.org/10.1016/j.jveb.2007.07.006
- Molnar,Cs.,Kaplan,F.,Roy,P.,Pachet,F.,Pongracz,P., Doka, A., Miklosi, A. (2008). Classification of dog barks: a machine learning approach. Anim Cogn. 11(3): 389-400. https://doi.org/10.1007/s10071-007-0129-9 PMid:18197442
- Molnar, C., Pongracz, P., Farago, T., Doka, A., Miklosi, A., (2009). Dogs discriminate between barks: the effect of context and identity of the caller. Behav Processes. 82(2): 198-201. https://doi.org/10.1016/j.beproc.2009.06.011 PMid:19596426
- Taylor, M., Ratcliffe, V.F., McComb, K., Reby, D. (2014). Auditory communication in domestic dogs: vocal signalling in the extended social environment of a companion animal. In: J. Kaminski, S. Marshall-Pescini (Eds.), The social dog, behavior and cognition (pp. 131-163). Amsterdam: Academic Press https://doi.org/10.1016/B978-0-12-407818-5.00005-X
- Bowling, D., Garcia, M., Garcia, M., Dunn, J.C., Dunn, J.C., Ruprecht, R., Stewart, A.D., et al. (2017). Body size and vocalization in primates and carnivores. Sci Rep. 7, 41070. https://doi.org/10.1038/srep41070 PMid:28117380 PMCid:PMC5259760
- Pongrácz, P., Molnár, C., Miklósi, Á. (2006). Acoustic parameters of dog barks carry emotional information for humans. Appl Anim Behav Sci. 100(3-4): 228-240. https://doi.org/10.1016/j.applanim.2005.12.004
- Farago, T., Pongracz, P., Miklosi, A., Huber, L., Viranyi, Z., Range, F. (2010). Dogs’ expectation about signalers’ body size by virtue of their growls. PLoS One 5(12): e15175. https://doi.org/10.1371/journal.pone.0015175 PMid:21179521 PMCid:PMC3002277
- Faragó, T., Takács, N., Miklósi, Á., Pongrácz, P. (2017). Dog growls express various contextual and affective content for human R Soc Open Sci. 4(5): 170134. https://doi.org/10.1098/rsos.170134 PMid:28573021 PMCid:PMC5451822
- Sibiryakova, V., Volodin, I.A., Volodina, E.V. (2020). Polyphony of domestic dog whines and vocal cues to body size. Curr Zool. 67(2): 165-176. https://doi.org/10.1093/cz/zoaa042 PMid:33854534 PMCid:PMC8026154
- Taylor, M., Reby, D., McComb, K. (2010). Why do large dogs sound more aggressive to human listeners: Acoustic bases of motivational misattributions. Ethol. 116(12): 1155-1162. https://doi.org/10.1111/j.1439-0310.2010.01829.x
- Bálint, A., Faragó, T., Dóka, A., Miklósi, Á., Pongrácz, P. (2013). ‘Beware, I am big and non- dangerous!’ - Playfully growling dogs are perceived larger than their actual size by their canine audience. Appl Anim Behav Sci. 148(1-2): 128-137. https://doi.org/10.1016/j.applanim.2013.07.013
- Zhang, Z. (2021). Contribution of laryngeal size to differences between male and female voice production. J Acoust Soc Am. 150(6): 4511-4521. https://doi.org/10.1121/10.0009033 PMid:34972311 PMCid:PMC8716178
- Walikar, B., Shamanna, K., Vandal, V.B. (2014). Acoustic analysis of voice in laryngeal pathology. JEBMH 1(7): 686-695. https://doi.org/10.18410/jebmh/2014/105
- Yin, S., McCowan, B. (2004). Barking in domestic dogs: context specificity and individual identification. Anim Behav. 68(2): 343-355. https://doi.org/10.1016/j.anbehav.2003.07.016
- Yin, S. (2002). A new perspective on barking in dogs (Canis familaris). J Comp Psychol. 116(2): 189-193. https://doi.org/10.1037//0735-7036.116.2.189 PMid:12083615
- Taylor, M., Reby, D. (2010). The contribution of source-filter theory to mammal vocal communication research. J Zool. 280(3): 221-236. https://doi.org/10.1111/j.1469-7998.2009.00661.x
- Bejdić, P., Ćutuk, A., Alić, A., Čengić, B., Avdić, R., Tandir, F., Mrvić, V. (2021). Comparative anatomical studies on ductus venosus in fetuses of domestic ruminants. Mac Vet Rev. 44(1): 29-36. https://doi.org/10.2478/macvetrev-2020-0034
- Hollien, H. (2014). Vocal fold dynamics for frequency change. J Voice. 28(4): 395-405. https://doi.org/10.1016/j.jvoice.2013.12.005 PMid:24726331
- Pfefferle, D., Fischer, J. (2006). Sounds and size: identification of acoustic variables that reflect body size in hamadryas baboons, Papio hamadryas. Animal Behaviour. 72(1): 43-51. https://doi.org/10.1016/j.anbehav.2005.08.021
- Dzierzęcka, M., Charuta, A. (2021). Morphometric description of the larynx in the dog (Canis familiaris). Acta Sci Pol Zootechn. 20(4): 43-50. https://doi.org/10.21005/asp.2021.20.4.06
- Condax, I., Nartey, J.N. (1978). The epiglottis in speech. JASA 64(S1): S91. https://doi.org/10.1121/1.2004453
- Garcia, M., Garcia, M., Herbst, C.T., Bowling, D.L., Dunn, J.C., Dunn, J.C., Fitch, W.T. (2017). Acoustic allometry revisited: morphological determinants of fundamental frequency in primate vocal production. Sci Rep. 7(1): 10450. https://doi.org/10.1038/s41598-017-11000-x PMid:28874852 PMCid:PMC5585385
- McCullagh, K.L., Shah, R.N., Huang, B.Y. (2022). Anatomy of the larynx and cervical Neuroimaging Clin N Am. 32(4): 809-829. https://doi.org/10.1016/j.nic.2022.07.011 PMid:36244725
- Riede, T., Stein, A., Baab, K.L., Hoxworth, J.M. (2023). Post-pubertal developmental trajectories of laryngeal shape and size in humans. Sci Rep. 13(1): 7673. https://doi.org/10.1038/s41598-023-34347-w PMid:37169811 PMCid:PMC10175495
- Andaloro, C., Sharma, P., La Mantia, I. (2023). Anatomy, head and neck, larynx arytenoid In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing
- Zeng, Q., Jiao, Y., Huang, X., Wang, R., Bao, H., Lamb, J.R., Le, J., et al. (2019). Effects of angle of epiglottis on aerodynamic and acoustic parameters in excised canine larynges. J Voice. 33(5): 627-633. https://doi.org/10.1016/j.jvoice.2018.02.007 PMid:31543207
- Ey, E., Pfefferle, D., Fischer, J. (2007). Do age- and sex-related variations reliably reflect body size in non-human primate vocalizations? A Primates. 48(4): 253-267. https://doi.org/10.1007/s10329-006-0033-y PMid:17226064
- Kershenbaum, A., Blumstein, D.T., Roch, M.A., Akçay, Ç., Backus, G.A., Bee, M.A., Bohn, K.M., et al. (2016). Acoustic sequences in non‐human animals: a tutorial review and prospectus. Biol Rev Camb Philos Soc. 91(1): 13-52. https://doi.org/10.1111/brv.12160 PMid:25428267 PMCid:PMC4444413
- Rameau, A., Andreadis, K., Ganesan, V., Lachs, M.S., Rosen, T., Wang, F., Maddox, A., et al. (2023). Acoustic screening of the “Wet voice”: proof of concept in an ex vivo canine laryngeal model. Laryngosc. 133(10): 2517-2524. https://doi.org/10.1002/lary.30525 PMid:36533566 PMCid:PMC10277308
Copyright
©2025 Hristova P.I. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of Interest Statement
The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.
Citation Information
Macedonian Veterinary Review. Volume 49, Issue 1, Pages i-viii, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: https://doi.org/10.2478/macvetrev-2025-0032