Original Scientific Article
Evaluation of the effect of co-infection by Mycoplasma gallisepticum (MG) and E. coli O78 on the pathogenicity of avian influenza (H9N2) in the SPF chicks
Nahed Yehia * ,
Dalia M. Omar ,
Nermin M. Monir ,
Dalia Said ,
Ahmed S. Helmy ,
Fatma Amer ,
Kawkab A. Ahmed ,
Nermeen A. Marden ,
Mona A.A. AbdelRahman

Mac Vet Rev 2026; 49 (1): i - x

10.2478/macvetrev-2025-0033

Received: 19 April 2025

Received in revised form: 17 August 2025

Accepted: 18 August 2025

Available Online First: 29 December 2025

Published on: 15 March 2026

Correspondence: Nahed Yehia, nermeen.marden@gmail.com
PDF HTML

Abstract

Co-infection significantly influences disease severity. This study investigated the impact of co-infections with Escherichia coli (E. coli) O78 and Mycoplasma gallisepticum (MG), alone and in combination, on the pathogenicity of low- pathogenic avian influenza H9N2 in specific pathogen-free (SPF) chickens. Seventy one-day-old SPF chicks were divided into seven equal groups (G), where G1 is the control one, G2-G4 were infected with H9, MG, and E. coli, respectively, and G5-G7 were co-infected with MG-H9, E. coli-H9, and MG-E. coli-H9, respectively. The study monitored clinical symptoms, mortality rates, H9N2 hemagglutination inhibition antibody titers, viral shedding through qRT-PCR, and histopathological changes in experimentally infected groups. The findings revealed that the group co-infected with all three pathogens had the highest significant mortality rate (70%), with severe clinical symptoms, moderate histopathological changes in the trachea and lungs, along with the highest significant hemagglutination inhibition antibody titers (6.40±0.52, 7.30±0.67 log2) at 7 and 14 days post-infection, respectively. This group also demonstrated the highest viral shedding (3.53±0.01, 4.53±0.09, 3.60±0.05 log10 EID50/ml) at 2, 4, and 7 days post-infection, respectively, with significant differences, and the longest duration of H9N2 shedding (10 days post-infection). In summary, co-infection enhanced the pathogenicity of H9N2; furthermore, co-infection with E. coli O78 increased H9N2 pathogenicity more than co-infection with M. gallisepticum, and the combination of both bacteria resulted in the highest pathogenicity of the H9N2 virus.

Keywords: H9N2 co-infection, Mycoplasma gallisepticum, E. coli O78, SPF chicks


References

  1. Mahmoud, I.A., Zyan, K.A., Hamoud, M.M., Khalifa, E., Dardir, S., Khalifa, R., Kilany, W.H., Elfeil, W.K. (2022). Effect of co-infection of low pathogenic avian influenza H9N2 virus and avian pathogenic E. coli on H9N2-vaccinated commercial broiler chickens. Front Vet Sci. 9, 918440. https://doi.org/10.3389/fvets.2022.918440 PMid:35836502 PMCid:PMC9274096
  2. El-Zoghby,E.F.,Arafa,A.S.,Hassan,M.K.,Aly,M.M., Selim, A., Kilany, W.H., Selim U., et al. (2012). Isolation of H9N2 avian influenza virus from bobwhite quail (Colinus virginianus) in Egypt. Arch Virol. 157(6): 1167-1172. https://doi.org/10.1007/s00705-012-1269-z PMid:22426861
  3. El-Shall, N.A., Sedeik, M.E., El-Nahas, A.F., Abdelsalam, R.A., Awad, A.M. (2019). Epidemiological surveillance of some avian respiratory viral disease in broiler chickens. AJVS 61(1): 185-194. https://doi.org/10.5455/ajvs.9184
  4. Amin, F., Mukhtar, N., Aslam, A., Sheikh, A.A., Sultan, B., Hussain, M., Shehzad, R., et al. (2022). Rate of multiple viral and bacterial coinfection(s) in influenza A/H9N2-infected broiler flocks. Avian Dis. 66(2): 197-204. https://doi.org/10.1637/aviandiseases-D-21-00114 PMid:35752982
  5. El-Shemy, A.A., Amer, M.M., Hassan, H.M., Elaish, M. (2024). Epidemiological distribution of respiratory viral pathogens in marketable vaccinated broiler chickens in five governorates in the Nile Delta, Egypt, from January 2022 to October 2022. Vet World. 17(2): 303-312. https://doi.org/10.14202/vetworld.2024.303-312 PMid:38595666 PMCid:PMC11000479
  6. Agha, S.K., Benlashehr, I., Naffati K.M., Bshina S.A., Khashkhosha, A.A. (2023). Correlation of avian influenza-H9N2 with high mortality in broiler flocks in the southwest of Tripoli, Libya. Open Vet J. 13(6): 715-722. https://doi.org/10.5455/OVJ.2023.v13.i6.6 PMid:37545701 PMCid:PMC10399647
  7. Subtain, S., Manzoor, S., Khan, F.M., Hussain, Z., Mukhtar, , Sadia, H., Abbas, S., Choudhary, I. (2016). Study on coinfection of Mycoplasma gallisepticum and low pathogenic avian influenza virus H9 in broilers. J Antivir Antiretrovir. 8, 3. https://doi.org/10.4172/jaa.1000142
  8. Jaleel, S., Younus, M., Idrees, A., Arshad, M., Khan, A.U., Ehtisham-Ul-Haque, S., Zaheer, M.I., et al. (2017). Pathological alterations in respiratory system during co-infection with low pathogenic avian influenza virus (H9N2) and Escherichia coli in broiler chickens. J Vet Res. 61(3): 253-258. https://doi.org/10.1515/jvetres-2017-0035 PMid:29978081 PMCid:PMC5894427
  9. Mahmmoud, N., Hamad, M.A., Khudhur, Z.N. (2022). Detection of Mycoplasma gallisepticum in broiler chickens by PCR. Open Vet J. 12(3): 329-334. https://doi.org/10.5455/OVJ.2022.v12.i3.4 PMid:35821769 PMCid:PMC9270947
  10. Tegegne, H., Filie, K., Tolosa, T., Debelo, M., Ejigu, E. (2024). Isolation and identification of Escherichia coli O157:H7 recovered from chicken meat at Addis Ababa slaughterhouses. Infect Drug Resist. 17, 851-863. https://doi.org/10.2147/IDR.S430115 PMid:38476767 PMCid:PMC10927593
  11. World Organization for Animal Health (WOAH) (2023). Avian influenza in: Manual of diagnostic tests and vaccines for terrestrial animals.
  12. Ben Shabat, M., Meir, R., Haddas, R., Lapin, E., Shkoda, I., Raibstein, I., Perk, S., Davidson, I. (2010). Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza viruses. J Virol Methods. 168(1-2): 72-77. https://doi.org/10.1016/j.jviromet.2010.04.019 PMid:20435070
  13. Bancroft, J.D., Suvarna, K., Layton, C. (2012). Bancroft’s theory and practice of histological techniques (7th ed.). Churchill Livingstone Elsevier Ltd.
  14. Rohaim, M.A., El Naggar, R.F., Madbouly, Y., AbdelSabour, M.A., Ahmed, K.A., Munir, M. (2021). Comparative infectivity and transmissibility studies of wild-bird and chicken-origin highly pathogenic avian influenza viruses H5N8 in chickens. Comp Immunol Microbiol Infect Dis. 74, 101594. https://doi.org/10.1016/j.cimid.2020.101594 PMid:33271478
  15. Chan, Y.H. (2003). Biostatistics 102: quantitative data-parametric & non-parametric tests. Singapore Med J. 44(8): 391-396.
  16. Chan, Y.H. (2003 b). Biostatistics 103: qualitative data-tests of independence. Singapore Med J. 44(10): 498-503.
  17. Jallow, M.M., Fall, A., Barry, M.A., Diop, B., Sy, S., Goudiaby, D., Fall, M.,et al. (2020). Genetic characterization of the first detected human case of low pathogenic avian influenza A/H9N2 in sub- Saharan Africa, Senegal. Emerg Microbes Infect. 9(1): 1092-1095. https://doi.org/10.1080/22221751.2020.1763858 PMid:32471335 PMCid:PMC8284972
  18. Panzarin, V., Marciano, S., Fortin, A., Brian, I., D’Amico, V., Gobbo, F., Bonfante, F., et al. (2022). Redesign and validation of a real-time RT-PCR to improve surveillance for avian influenza viruses of the H9 subtype. Viruses 14(6): 1263. https://doi.org/10.3390/v14061263 PMid:35746734 PMCid:PMC9227555
  19. Comin, A., Toft, N., Stegeman, A., Klinkenberg, D., Marangon, S. (2013). Serological diagnosis of avian influenza in poultry: is the haemagglutination inhibition test really the ‘gold standard’? Influenza Other Respir Viruses. 7(3): 257-264. https://doi.org/10.1111/j.1750-2659.2012.00391.x PMid:22694208 PMCid:PMC5779823
  20. Amer, S.A-M., Ahmed, H.M., Maatouq, A.M., Abdelbaki, M.M. (2024). Experimental evaluation for the dual infection of low pathogenic avian influenza virus H9N2 and avian pathogenic Escherichia coli in commercial broiler chickens. EJVS 55(7): 1985-1994. https://doi.org/10.21608/ejvs.2024.257900.1747 
  21. Mosleh, N., Dadras, H., Asasi, K., Taebipour, M.J., Tohidifar, S.S., Farjanikish, G. (2017). Evaluation of the timing of the Escherichia coli co-infection on pathogenicity of H9N2 avian influenza virus in broiler chickens. Iran J Vet Res. 18(2): 86-91.
  22. Borchsenius, S.N., Vishnyakov, I.E., Chernova, O.A., Chernov, V.M., Barlev, N.A. (2020). Effects of Mycoplasmas on the Host Cell Signaling Pathways. Pathogens 9(4): 308. https://doi.org/10.3390/pathogens9040308 PMid:32331465 PMCid:PMC7238135
  23. Wu, Z., Ding, L., Bao, J., Liu, Y., Zhang, Q., Wang, J., Li, R., et al. (2019). Co-infection of Mycoplasma gallisepticum and Escherichia coli triggers inflammatory injury involving the IL-17 signaling pathway. Front Microbiol. 10, 2615. https://doi.org/10.3389/fmicb.2019.02615 PMid:31803158 PMCid:PMC6872679
  24. Stipkovits, L., Glavits, R., Palfi, V., Beres, A., Egyed, L., Denes, B., Somogyi, M., Szathmary, S. (2012). Pathologic lesions caused by coinfection of Mycoplasma gallisepticum and H3N8 low pathogenic avian influenza virus in chickens. Vet Pathol. 49(2): 273-283. https://doi.org/10.1177/0300985811415702 PMid:21825309
  25. Wang, S., Jiang, N., Shi, W., Yin, H., Chi, X., Xie, Y., Hu, J., et al. (2021). Co-infection of H9N2 influenza A virus and Escherichia coli in a BALB/c mouse model aggravates lung injury by synergistic effects. Front Microbiol. 12, 670688. https://doi.org/10.3389/fmicb.2021.670688 PMid:33968006 PMCid:PMC8097157


Copyright

©2025 Yehia N. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors declared that they have no financial or non-financial conflict of interest regarding authorship and publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 49, Issue 1, Pages i-x, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI:  https://doi.org/10.2478/macvetrev-2025-0033