Original Scientific Article
Determination of the expression of bone morphogen protein 15 and its receptors in laying hens’ ovary
Desislava Vasileva Abadjieva * ,
Svetlana Jordanova Grigorova

Mac Vet Rev 2023; 46 (2): 171 - 176


Received: 20 February 2023

Received in revised form: 25 July 2023

Accepted: 11 September 2023

Available Online First: 20 September 2023

Published on: 15 October 2023

Correspondence: Desislava Vasileva Abadjieva, dessi_l@abv.bg


The objective of the current research was to determine expression, function and regulation of bone morphogenetic protein 15 (BMP15) during follicular development in laying hens. A trial was conducted with 40 layers from Lohman Klassik Brown breed (40 weeks old). At the end of the study fifteen layers were humanely killed and their ovaries were then dissected. Ribonucleic acid (RNA) expression of BMP15 was analyzed in the ooplasm and in granulosa cells. It was significantly higher in the ooplasm (p<0.01). BPM15 expression was not found in the granulosa cells from 6-8 mm and >9 mm follicles. The expression for bone morphogenetic protein 15 receptors (BMPR1B and BMPR2) in the granulosa cells was in significant positive correlation with the follicle size (p<0.05). The results obtained in this study demonstrate the possible role of BMP15 in developing oocytes. BMP15 expression is important for the growth regulation and signaling in the follicular cells in the preovulatory phase.

Keywords: laying hens, bone morphogenetic protein 15, gene expression


1. Li, L., Shi, X., Shi, Y., Wang, Z. (2021). The signaling pathways involved in ovarian follicle development. Front Physiol. 12, 730196. https://doi.org/10.3389/fphys.2021.730196 PMid:34646156 PMCid:PMC8504451
2. Shimasaki, S., Moore, R.K., Otsuka, F., Erickson, G.F. (2004). The bone morphogenetic protein system in mammalian reproduction. Endocr Rev. 25(1): 72-101. https://doi.org/10.1210/er.2003-0007 PMid:14769828
3. Abadjieva, D., Kistanova, E. (2016). Tribulus terrestris alters the expression of growth differentiation factor 9 and bone morphogenetic protein 15 in rabbit ovaries of mothers and F1 female offspring. Plos One 11(2): e0150400. https://doi.org/10.1371/journal.pone.0150400 PMid:26928288 PMCid:PMC4771171
4. Onagbesan, O.M., Bruggeman, V., Van As, P., Tona, K., Williams, J., Decuypere, E. (2003). BMPs and BMPRs in chicken ovary and effects of BMP-4 and -7 on granulosa cell proliferation and progesterone production in vitro. Am J Physiol Endocrinol Metab. 285(5): E973-E983. https://doi.org/10.1152/ajpendo.00104.2003 PMid:12888485
5. Ocon-Grove, O.M., Poole, D.H., Johnson, A.L. (2012). Bone morphogenetic protein 6 promotes FSH receptor and anti-Müllerian hormone mRNA expression in granulosa cells from hen prehierarchal follicles. Reproduction 143(6): 825-833. https://doi.org/10.1530/REP-11-0271 PMid:22495888
6. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes [Internet]. c2010 [cited 2010 October]. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:En:PDF 
7. Gilbert, A.B., Evans, A.J., Perry, M.M., Davidson, M.H. (1977). A method for separating the granulosa cells, the basal lamina and the theca of the preovulatory ovarian follicle of the domestic fowl (Gallus domesticus). J Reprod Fertil. 50(1): 179-181. https://doi.org/10.1530/jrf.0.0500179 PMid:864645
8. Livak, K.J., Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4): 402-408. https://doi.org/10.1006/meth.2001.1262 PMid:11846609
9. Elis, S., Dupont, J., Couty, I., Persani, L., Govoroun, M., Blesbois, E., Batellier, F., Monget, P. (2007). Expression and biological effects of bone morphogenetic protein-15 in the hen ovary. J Endocrinol. 194(3): 485-497. https://doi.org/10.1677/JOE-07-0143 PMid:17761888
10. Persani, L., Rossetti, R., Di Pasquale, E., Cacciatore, C., Fabre, S. (2014). The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum Reprod Update. 20(6): 869-883. https://doi.org/10.1093/humupd/dmu036 PMid:24980253
11. McNatty, K.P., Lawrence, S., Groome, N.P., Meerasahib, M.F., Hudson, N.L., Whiting, L., Heath, D.A., Juengel, J.L. (2006). Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants. Reprod Fertil Dev. 18, 403-412. https://doi.org/10.1071/RD05104 PMid:16737633
12. Garcia-Lopez, Á., Sanchez-Amaya, M.I., Halm, S., Astola, A., Prat, F. (2011). Bone morphogenetic protein 15 and growth differentiation factor 9 expression in the ovary of European sea bass (Dicentrarchus labrax): cellular localization, developmental profiles, and response to unilateral ovariectomy. Gen Comp Endocrinol. 174(3): 326-334. https://doi.org/10.1016/j.ygcen.2011.09.011 PMid:21978589
13. Otsuka, F., Yao, Z., Lee, T., Yamamoto, S., Erickson, G.F., Shimasaki, S. (2000). Bone morphogenetic protein-15. Identification of target cells and biological functions. J Biol Chem. 275(50): 39523-39528. https://doi.org/10.1074/jbc.M007428200 PMid:10998422
14. Lochab, A.K., Extravour, C.G. (2017). Bone Morphogenetic Protein (BMP) signaling in animal reproductive system development and function. Dev Biol. 427(2): 258-269. https://doi.org/10.1016/j.ydbio.2017.03.002 PMid:28284906
15. Dewailly, D., Robin, G., Peigne, M., Decanter, Ch., Pigny, P., Catteau-Jonard, S. (2016). Interactions between androgens, FSH, anti-Müllerian hormone and estradiol during folliculogenesis in the human normal and polycystic ovary. Hum Reprod Update. 22(6): 709-724. https://doi.org/10.1093/humupd/dmw027 PMid:27566840
16. Lv, P.P., Jin, M., Rao, J.P., Chen, J., Wang, L.Q., Huang, C.C., Yang, S.Q., et al. (2020). Role of anti- Müllerian hormone and testosterone in follicular growth: a cross-sectional study. BMC Endocr Disord. 20(1): 101. https://doi.org/10.1186/s12902-020-00569-6 PMid:32641160 PMCid:PMC7341602
17. Chen, Y., Yang, W., Shi, X., Zhang, C., Song, G., Huang, D. (2020). The factors and pathways regulating the activation of mammalian primordial follicles in vivo. Front Cell Dev Biol. 8, 575706. https://doi.org/10.3389/fcell.2020.575706 PMid:33102482 PMCid:PMC7554314
18. Kim, D., Ocon-Grove, O., Johnson, A.L. (2013). Bone morphogenetic protein 4 supports the initial differentiation of hen (Gallus gallus) granulosa cells. Biol Reprod. 88(6): 161, 1-7. https://doi.org/10.1095/biolreprod.113.109694 PMid:23658430

*Note: A correction of a sentence is being made in the Materials and Method part. Please see https://macvetrev.mk/LoadAbstract?DOI=_


© 2023 Abadjieva Vasileva D. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of Interest Statement

The authors declared that they have no potential lict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 46, Issue 2, Pages 171-176, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2023-0026