Original Scientific Article
Bovine whey supplementation in a high-fat diet fed rats alleviated offspring’s cardiac injury
Eman Mohammed Emara,
Hassan Ibrahim El-Sayyad*,
Heba Atef El-Ghaweet

Mac Vet Rev 2022; 45 (1): 89 - 99


Received: 05 February 2021

Received in revised form: 06 August 2021

Accepted: 18 August 2021

Available Online First: 04 March 2022

Published on: 15 March 2022

Correspondence: Hassan Ibrahim El-Sayyad, elsayyad@mans.edu.eg


The research study determined the effect of bovine whey supplementation in rats fed on high-fat diet on occurrence of myocardium damage and disfunction in its offspring. Eighty virgin female rats (Rattus norvegicus) (100-110 g body weight) were used for this study. Following mating, the pregnant rats were categorized into four groups: control, whey supplemented (W), high-fat diet (FD) and high-fat diet and whey supplemented group (FD+W). Whey supplementation alone or in combination with a high-fat diet was administered every other day during the gestation and lactation period. Offspring rats at the age of 1, 7, 14 and 21-day post-partum were sacrificed and their hearts were processed for histological, p53 immunohistochemistry, transmission electron microscopy and biochemical markers for cell damage. Offspring from the FD+W group exhibited improvement of the myocardium histological picture. Moreover, there was a lower accumulation of lipid deposits and regular organization of cardiomyocyte bands and intercalated discs. A lower p53 immune reaction and lower single strand DNA damage was noticed. The levels of the antioxidant enzymes (SOD and catalase) in the myocardium were increased, whereas the contents of IL6, MDA and caspase-3 were decreased, resulting in a reduction in inflammation and cell death. In conclusion, supplementation of whey to mother rats fed with high-fat diet alleviated the markers of cardiomyocyte injury in its offspring due to its antioxidant effect.

Keywords: high-fat diet, rats, myocardium, offspring, whey


  1. Hoffman, D.J., Powell, T.L., Barrett, E.S., Hardy, D.B. (2021). Developmental origins of metabolic diseases. Physiol Rev. 101(3): 739-795. https://doi.org/10.1152/physrev.00002.2020 PMid:33270534
  2. Siddeek, B., Mauduit, C., Chehade, H., Blin, G., Liand, M., Chindamo, M. et al. (2019). Long-term impact of maternal high-fat diet on offspring cardiac health: role of micro-RNA biogenesis. Cell Death Discov. 5, 71. https://doi.org/10.1038/s41420-019-0153-y PMid:30854230 PMCid:PMC6397280
  3. Mdaki, K.S., Larsen, T.D., Wachal, A.L., Schimelpfenig, M.D., Weaver, L.J., Dooyema, S.D. et al. (2016). Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction. Am J Physiol Heart Circ Physiol. 310, H681-H692. https://doi.org/10.1152/ajpheart.00795.2015 PMid:26801311 PMCid:PMC4867345
  4. Dunn, G.A., Bale, T.L. (2009). Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150(11): 4999-5009. https://doi.org/10.1210/en.2009-0500 PMid:19819967 PMCid:PMC2775990
  5. Ferey, J.L.A., Boudoures, A.L., Reid, M., Drury, A., Scheaffer, S., Modi, Z. et al. (2019). A maternal high-fat, high-sucrose diet induces transgenerational cardiac mitochondrial dysfunction independently of maternal mitochondrial inheritance. Am J Physiol Heart Circ Physiol. 316(5): H1202-H1210. https://doi.org/10.1152/ajpheart.00013.2019 PMid:30901280 PMCid:PMC6580388
  6. Chatterton, D.E.W., Smithers, G., Roupas, P., Brodkorb, A. (2006). Bioactivity of β-lactoglobulin and α-lactalbumin-Technological implications for processing. Int Dairy J. 16(11): 1229-1240. https://doi.org/10.1016/j.idairyj.2006.06.001
  7. Krissansen, G.W. (2007). Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr. 26(6): 713S-723S. https://doi.org/10.1080/07315724.2007.10719652 PMid:18187438
  8. El-Sayyad, H.I., El-Ghawet, H.A., El-Bayomi, K.S., Emara, E. (2020). Bovine whey improved the myocardial and lung damage of mother rats fed on a high fat diet. Stud Stem Cells Res Ther. 6(1): 001-008. https://doi.org/10.17352/sscrt.000014
  9. Kandil, N.T.A.H. Sabry, D.A.M., Ashry, N.E.E., El-Sayyad, H.I.H. (2020). Therapeutic potential of whey against aging related cytological damage of adenohypophysis of rat. East African Scholars J Agri Life Sci. 3(9): 304-310. https://doi.org/10.36349/EASJALS.2020.v03i09.002
  10. Sasaki, Y.F., Nishidate, E., Izumiyama, F., Matsusaka, N., Tsuda, S. (1997). Simple detection of chemical mutagens by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs. Mutat Res. 391(3): 215-231. https://doi.org/10.1016/S1383-5718(97)00073-9
  11. Deeg, R., Ziegenhorn, J. (1983). Kinetic enzymic method for automated determination of total cholesterol in serum. Clin Chem. 29(10): 1798-1802. https://doi.org/10.1093/clinchem/29.10.1798 PMid:6577981
  12. Fossati, P., Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that proceduces hydrogen peroxide. Clin Chem. 28(10): 2077-2080. https://doi.org/10.1093/clinchem/28.10.2077 PMid:6812986
  13. Grove, T.H. (1979). Effect of reagent PH on determination of the high-density lipoprotein cholesterol by precipitation with sodium phototungestate-magnesium. Clin Chem. 25(4): 560-564. https://doi.org/10.1093/clinchem/25.4.560 PMid:38018
  14. Friedewald, W.T., Levy, R.I., Fredrickson, D.S. (1972). Estimation of low density lipoprotein cholesterol in plasma without use preparative ultracentri-fuge. Clin Chem. 18(6): 499-502. https://doi.org/10.1093/clinchem/18.6.499 PMid:4337382
  15. Niskikimi, M., Rao, N., Yaki, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen. Biochem Biophys Res Commun. 46(2): 849-854. https://doi.org/10.1016/S0006-291X(72)80218-3
  16. Bock, P.P., Kramer, R., Pavelka, M. (1980). Peroxisomes and related particles. In M. Alfert, W. Beermann, L. Goldstein, K.R. Porter, P. Sitte (Eds.), Cell Biology Monographs 7 (pp. 44-74). Springer, Berlin https://doi.org/10.1007/978-3-7091-2055-2_2
  17. Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95(2): 351-358. https://doi.org/10.1016/0003-2697(79)90738-3
  18. Ribaroff, G.A., Wastnedge, E., Drake, A.J., Sharpe, R.M., Chambers, T.J.G. (2017). Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis. Obes Rev. 18(6): 673-686. https://doi.org/10.1111/obr.12524 PMid:28371083 PMCid:PMC5434919
  19. Butruille, L., Marousez, L., Pourpe, C., Oger, F., Lecoutre, S., Catheline, D. et al. (2019). Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int J Obes (Lond). 43(12): 2381-2393. https://doi.org/10.1038/s41366-018-0310-z PMid:30622312
  20. Guzzardi, M.A., Liistro, T., Gargani, L., Ait Ali, L., D’Angelo, G., Rocchiccioli, S. et al. (2018). Maternal obesity and cardiac development in the offspring: Study in human neonates and minipigs. JACC Cardiovasc Imaging. 11(12): 1750-1755. https://doi.org/10.1016/j.jcmg.2017.08.024 PMid:29153568
  21. Giacco, F., Brownlee, M. (2010). Oxidative stress and diabetic complications. Circ Res. 107(9): 1058-1070. https://doi.org/10.1161/CIRCRESAHA.110.223545 PMid:21030723 PMCid:PMC2996922
  22. Magalhães, D.A., Kume, W.T., Correia, F.S., Queiroz, T.S., Allebrandt Neto, E.W., Santos, M.P.D. et al. (2019). High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal. An Acad Bras Cienc. 91(1): e20180314. https://doi.org/10.1590/0001-3765201920180314 PMid:30916157
  23. Xiang, L., Zhang, Q., Chi, C., Wu, G., Lin, Z., Li, J. et al. (2020). Curcumin analog A13 alleviates oxidative stress by activating Nrf2/ARE pathway and ameliorates fibrosis in the myocardium of highfat- diet and streptozotocin-induced diabetic rats. Diabetol Metab Syndr. 12, 1. https://doi.org/10.1186/s13098-019-0485-z PMid:31921358 PMCid:PMC6947902
  24. Attia, H.M., Taha, M. (2018). Protective effect of captopril on cardiac fibrosis in diabetic albino rats: a histological and immunohistochemical study. Benha Med J. 35(3): 378-385. https://doi.org/10.4103/bmfj.bmfj_122_18
  25. Sheen, J.M., Yu, H.R., Tain, Y.L., Tsai, W.L., Tiao, M.M., Lin, I.C., Tsai, C.C., Lin, Y.L., Huang, L.T. (2018). Combined maternal and postnatal high-fat diet leads to metabolic syndrome and is effectively reversed by resveratrol: a multiple-organ study. Sci Rep. 8(1): 5607. https://doi.org/10.1038/s41598-018-24010-0PMid:29618822 PMCid:PMC5884801
  26. Dasgupta, A., Chow, L., Wells, A., Datta, P. (2001). Effect of elevated concentration of alkaline phosphatase on cardiac troponin I assays. J Clin Lab Anal. 15(4): 175-177. https://doi.org/10.1002/jcla.1023 PMid:11436198 PMCid:PMC6807912
  27. You, A.H., Han, D.W., Ham, S.Y., Lim, W., Song, Y. (2019). Serum alkaline phosphatase as predictor of cardiac and cerebrovascular complications after lumbar spinal fusion surgery in elderly: A retrospective study. J Clin Med. 8(8): 1111. https://doi.org/10.3390/jcm8081111 PMid:31357535 PMCid:PMC6723677
  28. Al-Gebaly, A.S. (2019). Ameliorating role of whey syrup against ageing- related damage of myocardial muscle of Wistar Albino rats. Saudi J Biol Sci. 26(5): 950-956. https://doi.org/10.1016/j.sjbs.2018.03.014 PMid:31303824 PMCid:PMC6600591
  29. Martin, M., Kopaliani, I., Jannasch, A., Mund, C., Todorov, V., Henle, T. et al. (2015). Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate. Acta Physiol (Oxf). 215(4): 167-176. https://doi.org/10.1111/apha.12578 PMid:26297928
  30. El-Shinnawy, N.A., Abd Elhalem, S.S., Haggag, N.Z., Badr, G. (2018). Ameliorative role of camel whey protein and rosuvastatin on induced dyslipidemia in mice. Food Funct. 9(2): 1038-1047. https://doi.org/10.1039/C7FO01871A PMid:29349446
  31. Bartfay, W.J., Davis, M.T., Medves, J.M., Lugowski, S. (2003). Milk whey protein decreases oxygen free radical production in a murine model of chronic iron-overload cardiomyopathy. Can J Cardiol. 19(10): 1163-1168.
  32. Mann, P.E., Huynh, K., Widmer, G. (2018). Maternal high fat diet and its consequence on the gut microbiome: A rat model. Gut Microbes. 9(2): 143-154. https://doi.org/10.1080/19490976.2017.1395122 PMid:29135334 PMCid:PMC5989793
  33. Pace, R.M., Prince, A.L., Ma, J., Belfort, B.D.W., Harvey, A.S., Hu, M. et al. (2018). Modulations in the offspring gut microbiome are refractory to postnatal synbiotic supplementation among juvenile primates. BMC Microbiol. 18, 28. https://doi.org/10.1186/s12866-018-1169-9 PMid:29621980 PMCid:PMC5887201


© 2022 Emara E.M. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 45, Issue 1, Pages 89-99 e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2022-0017, 2022